Курсовая работа: Решение математических задач с использованием программного пакета MathCad
Перепишем условие следующим образом:
x'=z
z'+ 5z=29cos t
z'=29cos t – 5z
Задаём начальные данные:
Находим значение x и x'
Для сравнения решим это дифференциальное уравнение с шагом 0,01. Построим график.
2.4 Численное решение методом Рунге-Кутты четвертого порядка
Определяем функцию D, задающую производные и находим значения функции. Строим график функции:
2.5 Расчет погрешности приближенного и численных методов
Таблица 1 – Значения функции
Заданный интервал | Точное решение | Приближенное с помощью рядов | Метод Эйлера (шаг 0,1) | Метод Эйлера (шаг 0,01) | Метод Рунге Кутты |
0 | -1,000000 | -1,000000 | -1,000000 | -1,000000 | -1,000000 |
0,1 | -0,933240 | -0,933240 | -1,000000 | -0,938953 | -0,933221 |
0,2 | -0,753725 | -0,753766 | -0,855000 | -0,762488 | -0,753695 |
0,3 | -0,488339 | -0,488787 | -0,601974 | -0,498255 | -0,488302 |
0,4 | -0,159271 | -0,161707 | -0,270096 | -0,168991 | -0,159232 |
0,5 | 0,214972 | 0,205973 | 0,117337 | 0,206412 | 0,215012 |
0,6 | 0,618801 | 0,592753 | 0,541466 | 0,612091 | 0,618840 |
0,7 | 1,038952 | 0,975227 | 0,986812 | 1,034588 | 1,038989 |
0,8 | 1,464038 | 1,326187 | 1,440495 | 1,462384 | 1,464072 |
0,9 | 1,884213 | 1,612712 | 1,891659 | 1,885536 | 1,884245 |
1 | 2,290920 | 1,794271 | 2,331055 | 2,295416 | 2,290950 |
Таблица 2 – Локальная, абсолютная и относительная погрешность
Абсолютная погрешность | Относительная погрешность | |||||||
Решения с помощью рядов | метода Эйлера (шаг 0,1) | метода Эйлера (шаг 0,01) | метода Рунге Кутты | Решения с помощью рядов | метода Эйлера (шаг 0,1) | метода Эйлера (шаг 0,01) | метода Рунге Кутты | |
Локальная погрешность | 0,000000 | 0,000000 | 0,000000 | 0,000000 | 0,0 | 0,0 | 0,0 | 0,000 |
0,000000 | 0,066760 | 0,005713 | -0,000019 | 0,0 | -6,7 | -0,6 | 0,002 | |
0,000041 | 0,101275 | 0,008763 | -0,000030 | 0,0 | -11,8 | -1,1 | 0,004 | |
0,000448 | 0,113635 | 0,009916 | -0,000037 | -0,1 | -18,9 | -2,0 | 0,008 | |
0,002436 | 0,110825 | 0,009720 | -0,000039 | -1,5 | -41,0 | -5,8 | 0,024 | |
0,008999 | 0,097635 | 0,008560 | -0,000040 | 4,4 | 83,2 | 4,1 | -0,019 | |
0,026048 | 0,077335 | 0,006710 | -0,000039 | 4,4 | 14,3 | 1,1 | -0,006 | |
0,063725 | 0,052140 | 0,004364 | -0,000037 | 6,5 | 5,3 | 0,4 | -0,004 | |
0,137851 | 0,023543 | 0,001654 | -0,000034 | 10,4 | 1,6 | 0,1 | -0,002 | |
0,271501 | -0,007446 | -0,001323 | -0,000032 | 16,8 | -0,4 | -0,1 | -0,002 | |
0,496649 | -0,040135 | -0,004496 | -0,000030 | 27,7 | -1,7 | -0,2 | -0,001 |
2.6 Совместное графическое решение
Рисунок 1 – Совместное графическое решение
Из всех методов наиболее точным оказался метод Рунге-Кутты, его максимальная относительная погрешность 0,024%, относительная погрешность приближенного метода составила 27,7%. Метод Эйлера с шагом 0,1 имеет наибольшую погрешность 83,2%, однако при уменьшении шага в до 0,01 его погрешность составляет всего 5,8%. Это подтверждает то, что погрешность метода Эйлера сильно зависит от принятого шага. Проанализировав графическое решение делаем вывод о том, что методы Эйлера и Рунге-Кутты повторяют форму кривой точного решения, а график приближенного решения с увеличением аргумента всё сильнее отклоняется от искомого графика – свидетельство того, что погрешность решения с помощью рядов зависит от количества членов ряда. Характер кривой также говорит о том, что точность приближенного решения с помощью рядов удовлетворительна только вблизи некоторой точки.
3. Система дифференциальных уравнений
Решить систему дифференциальных уравнений, получить точное решение вручную, операторным методом, приближенное решение с помощью рядов (до 5 элемента), численное решение методом Эйлера, Рунге-Кутты. Представить графическое совместное решение, рассчитать локальную, относительную и абсолютную погрешность решения.
Дано:
dx/dt=3x + y
dy/dt=5/2x – y + 2
x(0)=0
y(0)=1
3.1 Точное решение операторным методом
Пусть X(s) изображение, для оригинала x(t), Y(s) изображение для оригинала y(t). Перейдем от оригинала к изображению: