Курсовая работа: Решение математических задач с помощью алгоритмического языка Turbo Pascal, Microsoft Excel, пакета MathCAD и разработка программ в среде Delphi
for i: =1 to n Do
begin
z: =exp ( (-x*sin (x)) *ln (x)) - ln (2*x+5);
d: =sqrt (2+sin (2*x)) +sqr (x);
F: =z/d;
S: =S+F*a [i] ;
x: =x+h;
end;
WriteLN ('S=',S: 10: 3);
readkey
END.
Результаты вычислений:
Блок-схема алгоритма решения задания №1.4
Нахождение функции, если дан x, h, n, задан массив :
Задание 2. Интегрирование функции
Вычислить определённый интеграл
Так как определённый интеграл является площадью фигуры, ограниченной некоторой функцией y=f (x), то целью задачи является нахождение площади этой фигуры. Для этого необходимо данную фигуру разбить на более простые, площадь которых находится по простым формулам, а затем сложить полученные площади в одну для нахождения необходимой, т.е. для вычисления данного определённого интеграла.
Существуют различные методы нахождения определённого интеграла.
Рассмотрим некоторые из них:
метод средних прямоугольников;
метод трапеций;
метод Симпсона (парабол);
с автоматическим выбором шага;
1. Метод прямоугольников
Для вычисления приближённого значения определённого интеграла отрезок [a, b] делят на n равных частей точками
a=x0 <x1 <x2 <…<xn =b
так, что xi+1 -xi = (b-a) /n (I=0,1,2,…,n-1). Тогда длина каждого частичного отрезка определяется как h= (b-a) /n, а точки разбиения x0 =a, x1 =x0 +h, x2 =x1 +h,…, xn =xn -1 +h. Эти точки называются узлами, а h-шагом интегрирования. В узлах вычисляются ординаты y0 , y1 ,…, yn , т.е. yi =f (xi ). На частичных отрезках [xi ; xi +1 ] строятся прямоугольники, высота которых равна значению f (x) в какой-либо точке каждого частичного отрезка. Произведение f (xi ) *h определяет площадь частичного прямоугольника, а сумма таких произведений - площадь ступенчатой фигуры, представляющей собой приближённое значение интеграла.
Если f (xi ) вычисляется в левых концах отрезков [xi ; xi +1 ], то получается формула левых прямоугольников:
»Iл = (y0 +y1+…+ yn -1 ) = .