Курсовая работа: Решение систем дифференциальных уравнений методом Рунге - Кутты 4 порядка

R3 =f(xm +h/2,ym +hR2 /2),1.17

R4 =f(xm +h/2,ym +hR3 /2). 1.18

Ошибка ограничения для этого метода равна et =kh5

так что формулы 1.14-1.18 описывают метод четвертого порядка. Заметим, что при использовании этого метода функцию необходимо вычислять четыре раза.

3. Выбор метода реализации программы

Исходя из вышеизложенного, для решения систем дифференциальных уравнений мы выбираем наиболее точный метод решения – метод Рунге-Кутта 4 порядка, один из самых употребляемых методов интегрирования дифференциальных уравнений.

этот метод является одноступенчатым и одношаговым

требует информацию только об одной точке

имеет небольшую погрешность

значение функции рассчитывается при каждом шаге

4. Б лок-схема программмы




???????? ?????????

Процедура INIT

Вход


f1,C[1],C[2],C[3]

f1,k1,k2,k3,k4

f1,Xn,Xk,dp,n,eps,p


выход




5. Программа

PROGRAM smith_04;USES crt; VAR i,n:integer; sum,k1,k2,k3,k4,p,dp,eps,Xn,Xk,X,dX:real; rSR,C,dC,r1,r2,r3,r4,cPR:array[1..3] of real;

f1,f2:text;

PROCEDURE Difur;

BEGIN

dC[1]:=C[3]*k2+C[2]*k4-C[1]*k1-C[1]*k3; {dcA}

dC[2]:=C[1]*k3-C[2]*k4; {dcB}

dC[3]:=C[1]*k1-C[3]*k2; {dcC}

END;

PROCEDURE RK_4;

BEGIN

Difur;

К-во Просмотров: 608
Бесплатно скачать Курсовая работа: Решение систем дифференциальных уравнений методом Рунге - Кутты 4 порядка