Курсовая работа: Решение задач с нормальными законами в системе "Статистика"

В случае если параметры известны дискриминацию можно провести следующим образом.

Имеются функции плотности нормально pacпределенных классов. Задана точка х в пространстве k измерений. Предполагая, что имеет наибольшую плотность, необходимо отнести точку х к i-му классу. Существует доказательство, что если априорные вероятности для определяемых точек каждого класса одинаковы и потери при неправильной классификации i-й группы в качестве j-й не зависят от i и j, то решающая процедура минимизирует ожидаемые потери при неправильной классификации.

Ниже приведен пример оценки параметра многомерногo нормального pacпределения µ и Σ.

µ и Σ мoгyт быть оценены по выборочным данным: и для классов. Задано l выборок из некоторых классов. Математические ожидания мoгyт быть оценены средними значениями

(1.2)

Несмещенные оценки элементов ковариационной матрицы Σ есть

(1.3)

Cледовательно, можно определить и по l выборкам в каждом классе при помощи (1.2), (1.3), получив оценки, точку х необходимо отнести к классу, для которой функция f(х) максимальна.

Необходимо ввести предположение, что все классы, среди которых должна проводиться дискриминация, имеют нормальное распределение с одной и той же ковариационной матрицей Σ.

В результате существенно упрощается выражение для дискриминантной функции.

Класс, к которому должна принадлежать точка х, можно определить на

основе неравенства

(1.4)


Необходимо воспользоваться формулой (1.1) для случая, когда их ковариационные матрицы равны:, а ( есть вектор математических ожиданий класса i. Тогда (1.4) можно представить неравенством их квадратичных форм

(1.5)

Если имеется два вектора Z и W, то скалярное произведение можно записать . В выражении (1.5) необходимо исключить справа и слева, поменять у всех членов суммы знаки. Теперь преобразовать

Аналогично проводятся преобразования по индексу i. Необходимо сократить правую и левую часть неравенства (1.5) на 2 и, используя запись квадратичных форм, получается

(1.6)

Необходимо ввести обозначения в выражение (1.6):

Тогда выражение (1.6) примет вид


(1.7)

Следствие: проверяемая точка х относится к классу i, для которого линейная функция

(1.8)

Преимущество метода линейной дискриминации Фишера заключается в линейности дискриминантной функции (1.8) и надежности оценок ковариационных матриц классов.

Пример

Имеются два класса с параметрами и . По выборкам из этих совокупностей объемом n1 n2 получены оценки и . Первоначально проверяется гипотеза о том, что ковариационные матрицы равны. В случае если оценки и статистически неразличимы, то принимается, что и строится общая оценка , основанная на суммарной выборке объемом n1 +n2 , после чего строится линейная дискриминантная функция Фишера (1.8).


2. ДИСКРИМИНАНТНЫЙ АНАЛИЗ ПРИ НОРМАЛЬНОМ ЗАКОНЕ РАСПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЕЙ

Имеются две генеральные совокупности Х и У, имеющие трехмерный нормальный закон распределения с неизвестными, но равными ковариационными матрицами.

Алгоритм выполнения дискриминантного анализа включает основные этапы:

1. Исходные данные представляются либо в табличной форме в виде q подмножеств (обучающих выборок) Mk и подмножества М 0 объектов подлежащих дискриминации, либо сразу в виде матриц X (1) , X (2) , ..., X (q ) , размером (nk ×p ):

Таблица 1

Номер подмножества Mk (k = 1, 2, ..., q )

Номер объекта, i

(i = 1, 2, ..., nk )

Свойства (показатель), j (j = 1, 2, ..., p )
x 1 x 2 x 0
Подмножество M 1 (k = 1) 1
2
n 1
Подмножество M 2 (k = 2) 1
2
n 2
Подмножество Mq (k = q ) 1
2
nq
Подмножество M 0 , подлежащее дискриминации 1
2
m

где X (k) - матрицы с обучающими признаками (k = 1, 2, ..., q ),

X (0) матрица новых m -объектов, подлежащих дискриминации (размером m ×p ),

р — количество свойств, которыми характеризуется каждый i -й объект.

Здесь должно выполняться условие: общее количество объектов N множества М должно быть равно сумме количества объектов m (в подмножестве M 0 ), подлежащих дискриминации, и общего количества объектов в обучающих подмножествах:, где q - количество обучающих подмножеств (q ≥2). В реальной практике наиболее часто реализуется случай q =2, поэтому и алгоритм дискриминантного анализа приведен для данного варианта.

2. Определяются элементы векторов средних значений по каждому j -му признаку для i объектов внутри k -го подмножества (k = 1, 2):


Результаты расчета представляются в виде векторов столбцов:

К-во Просмотров: 198
Бесплатно скачать Курсовая работа: Решение задач с нормальными законами в системе "Статистика"