Курсовая работа: Решение задач с нормальными законами в системе "Статистика"

- число переменных в модели – 4;

- значение лямбды Уилкса – 0,0086739;

- приближенное значение F – статистики, связанной с лямбдой Уилкса – 9,737242;

- уровень значимости F – критерия для значения 9,737242.

Значение статистики Уилкса лежит в интервале [0,1]. Значения статистики Уилкса, лежащие около 0, свидетельствуют о хорошей дискриминации, а значения, лежащие около 1, свидетельствуют о плохой дискриминации. По данным показателя значение лямбды Уилкса, равного 0,0086739 и по значению F – критерия равного 9,737242, можно сделать вывод, что данная классификация корректная.

В качестве проверки корректности обучающих выборок необходимо посмотреть результаты матрицы классификации (рис. 3.2).

Матрица классификации . Строки: наблюдаемые классы Столбцы: предсказанные классы
Процент низкий высокий удовлетв
низкий 100,0000 5 0 0
высокий 100,0000 0 2 0
удовлетв 100,0000 0 0 3
Всего 100,0000 5 2 3

Рис. 3.2

Из матрицы классификации можно сделать вывод, что объекты были правильно отнесены экспертным способом к выделенным группам. Если есть объекты, неправильно отнесенные к соответствующим группам, можно посмотреть классификацию наблюдений (рис.3.3).

Классификация наблюдений. Неправильные классификации отмечены *
Наблюд. 1 2 3
Азербайджан низкий низкий удовлетв высокий
Армения низкий низкий удовлетв высокий
Белоруссия высокий высокий низкий удовлетв
Грузия удовлетв удовлетв низкий высокий
Казахстан удовлетв удовлетв низкий высокий
Киргизия низкий низкий удовлетв высокий
Россия высокий высокий низкий удовлетв
Таджикистан низкий низкий удовлетв высокий
Туркмения удовлетв удовлетв низкий высокий
Узбекистан низкий низкий удовлетв высокий

Рис. 3.3

В таблице классификации наблюдений, некорректно отнесенные объекты помечаются звездочкой (*). Таким образом, задача получения корректных обучающих выборок состоит в том, чтобы исключить из обучающих выборок те объекты, которые по своим показателям не соответствуют большинству объектов, образующих однородную группу.

В результате проведенного анализа общий коэффициент корректности обучающих выборок должен быть равен 100% (рис. 3.2).

На основе полученных обучающих выборок можно проводить повторную классификацию тех объектов, которые не попали в обучающие выборки, и любых других объектов, подлежащих группировке.

Для этого необходимо в окне диалогового окна результаты анализа дискриминантных функций нажать кнопку функции классификации. Появится окно (рис. 3.4), из которого можно выписать классификационные функции для каждого класса.

Функции классификации
низкий высокий удовлетв
Кол-во чел на 1 врача 1,455 2,35 1,834
Расх на здрав 1,455 1,98 1,718
ВВП 0,116 0,20 0,153
Смертность 29,066 46,93 36,637
Конст-та -576,414 -1526,02 -921,497

Рис. 3.4

Таблица 3

Классификационные функции для каждого класса

Низкий класс = -576,414+1,455*кол-во чел на 1 врача+1,455*расх на здра+0,116*ВВП+29,066*смертность
Высокий класс =-1526,02+2,35*кол-во чел на 1 врача+1,98*расх на здрав+0,20*ВВП+46,93*смертность
Удовлетворительный класс =-921,497+1,834*кол-во чел на 1 врача+1,718*расх на здра+0,153*ВВП+36,637*смертность

С помощью этих функций можно будет в дальнейшем классифицировать новые случаи. Новые случаи будут относиться к тому классу, для которого классифицированное значение будет максимальное.

Необходимо определить принадлежность стран Молдавия и Украина, подставив значения соответствующих показателей в формулы (Таблица 4).

Таблица 4

Страна Кол-во человек на 1 врача Расходы на здравоохранение ВВП на душу населения Смертность Высокий Низкий Удовлетворительный Класс
Молдавия 251 143 2500 12,6 438,29 653,09 628,64 Низкий
Украина 224 131 3850 16,4 880,23 863,39 904,27 Удовл.

ЗАКЛЮЧЕНИЕ

В данной курсовой работе был рассмотрен такой метод многомерного статистического анализа как дискриминантный. В дискриминантном анализе изучены: основные понятия, цели и задачи дискриминантного анализа. А также определение числа и вида дискриминирующих функций, и классификация объектов с помощью функции расстояния.

Для данного метода приведены примеры решения задач с использованием ППП STATISTICA.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Баранова, Т.А. Многомерные статистические методы. Корреляционный анализ. [Текст]: Метод. указания / Иван. гос. хим.-технол. ун-т. / Т.А. Баранова. – Иваново, 9 - 40 с.

2. Буреева, Н.Н. Многомерный статистический анализ с использованием ППП “STATISTICA” [Текст] / Н.Н. Буреева. - Нижний Новгород, 2007. -112с.

3. Дубров, А.М. Многомерные статистические методы и основы эконометрики. [Текст]: Учебное пособие / А.М. Дубров. - М.: МЭСИ, 2008.- 79 с.

4. Калинина, В.Н. Введение в многомерный статистический анализ [Текст]: Учебное пособие / В.Н. Калинина.- ГУУ. – М., 2010. – 66 с.

К-во Просмотров: 196
Бесплатно скачать Курсовая работа: Решение задач с нормальными законами в системе "Статистика"