Курсовая работа: Решение задачи линейного программирования графическим методом
· прибыль от их реализации – согласно условию, соответственно 40 и 20 $.
Таким образом, доход от продажи суточного объема производства радиоприемников первой модели равен $ в сутки, а от продажи радиоприемников второй модели – $ в сутки. Поэтому запишем ЦФ в виде суммы дохода от продажи радиоприемников первой и второй модели:
[$/сутки]
Ограничения
Возможные объемы производства радиоприемников и ограничиваются следующими условиями:
· количество элементов электронных схем, израсходованное в течении суток на производство радиоприемников обоих моделей, не может превышать суточного запаса этих элементов на складе;
· суточный объем первой технологической линии (производство радиоприемников первой модели) не может превышать 60 шт в сутки, второй (производство радиоприемников второй модели) – 80 шт;
· объемы производства радиоприемников не могут быть отрицательными.
Таким образом, все ограничения задачи делятся на 3 группы, обусловленные:
1) расходом элементов электронных схем;
2) суточным объемом технологических линий;
3)неотрицательностью объемов производства.
Запишем эти ограничения в математической форме:
1) Т.к. из условия на радиоприемники первой и второй модели необходимо 15 и 20 элементов соответственно, то данное ограничение имеет вид:
[шт/сутки]
2) Ограничения по суточному объему первой и второй технологических линий имеют вид:
[шт/сутки]
3) Неотрицательность объемов производства задается как
.
Таким образом, математическая модель этой задачи имеет вид
3.3 Нахождение оптимального решения задачи с помощью линейного метода.
Математическую модель задачи о радиоприёмниках мы нашли на предыдущем шаге:
Построим прямые ограничений, для чего вычислим координаты точек пересечения этих прямых с осями координат (рис.3.1).
прямая (1) – точки (0;95) и (63,(3);0), прямая (2) проходит через точку параллельно оси , прямая (3) проходит через точку параллельно оси .