Курсовая работа: Розподіл Пуасона
Нехай маємо експериментальні значення випадкової величини (ознаки) Х‚ тоді можемо визначити деякі вибіркові статистики.
Середнє значення визначаємо за формулою
‚ (1)
яке є наближеним значенням (оцінкою) математичного сподівання М(Х) ознаки Х генеральної сукупності. Якщо за даними спостереження побудовано варіаційний ряд‚ то вводять поняття середньої зваженої
‚ (2)
де - варіанта‚ якщо ряд дискретний і центр інтервалу‚ якщо ряд інтервальний; - частота варіанти або статистична вага‚ - кількість інтервалів.
Характеристикою розсіяння навколо середньої є емпірична дисперсія‚ яку визначають за формулою
. (3)
Середнім квадратичним відхиленням називають корінь квадратний з дисперсії:
. (4)
Середнє квадратичне має ту розмірність‚ що й значення ознаки і є абсолютною характеристикою коливання ознаки навколо середнього значення.
Під статистичною гіпотезою розуміють будь-яке твердження щодо генеральної сукупності‚ яке перевіряється на основі вибірки. Статистичні гіпотези висловлюють як щодо законів розподілу‚ так і відносно параметрів розподілу. Наприклад‚ гіпотеза про те‚ що число відмов у телефонній мережі підпорядкований розподілу Пуассона‚ є гіпотезою про закон розподілу. Гіпотеза про те‚ що середні розміри деталей‚ які виготовляються на однотипних‚ паралельно працюючих станках‚ приблизно однакові‚ є гіпотезою про параметри розподілу.
Зроблений на основі статистичних даних висновок про те‚ що між кількома генеральними сукупностями або між емпіричним і теоретичним розподілом істотних відмінностей немає‚ називають нульовою (основною) гіпотезою. Гіпотезу‚ яка заперечує основну‚ називають альтернативною гіпотезою. Нульову гіпотезу зазвичай позначають літерою H0 ‚ альтернативну - літерою H1 .
В результаті перевірки статистичної гіпотези‚ яка ґрунтується на статистичних спостереженнях‚ можна прийняти або відхилити нульову гіпотезу. Помилкове рішення можна допустити в обидвох випадках. Тому розрізняють помилки двох видів. Помилка першого виду полягає в тому‚ що нульова гіпотеза заперечується‚ тоді як насправді вона правильна. Помилка другого виду полягає в тому‚ що нульова гіпотеза приймається‚ тоді як правильною є альтернативна гіпотеза.
Ймовірність допустити помилку першого типу називають рівнем значущості і позначають грецькою літерою α. Рівень значущості встановлює дослідник залежно від важливості досліджуваної задачі. Рівень значущості - це та мінімальна ймовірність‚ починаючи з якої можна вважати подію практично неможливою. Найчастіше рівень значущості беруть рівним 0,05 або 0,01‚ значно рідше 0,1.
Є два типи задач перевірки гіпотез. Задачі першого типу пов'язані з перевіркою гіпотез про достовірність істотної відмінності між параметрами статистичних сукупностей. Відмінність між параметрами статистичних сукупностей вважають істотною‚ якщо вона перевищує ту‚ яку б можна було б пояснити випадковими коливаннями. Прикладом задачі першого типу є‚ наприклад‚ оцінка достовірності істотної відмінності між дисперсіями дох вибірок або між їх середніми значеннями.
Задачі другого типу пов'язані з оцінкою ступеня розбіжності емпіричного та теоретичного розподілів. Прикладом задачі цього типу може бути перевірка гіпотези про те‚ що емпіричний розподіл узгоджується з нормальним законом розподілу.
Перевірка гіпотези полягає в тому‚ що з вибірковими даними обчислюються значення деякої величини‚ яка має відомий стандартний розподіл (нормальний‚ Пуассона‚ Стьюдента‚ Пірсона та ін.). Цю величину називають статистикою критерію або просто значенням критерію.
Якщо обчислене за вибіркою значення критерію не перевищує граничного (критичного) значення‚ взятого з відповідних таблиць‚ то нульову гіпотезу визнають за вірну при заданому рівні значущості α. У цьому разі отриману за вибірковими даними відмінність можна пояснити тільки випадковістю вибірки. Але прийняття гіпотези зовсім не означає‚ що рівність параметрів генеральних сукупностей доведена‚ або те‚ що теоретичний закон відповідає емпіричному розподілу. Наявний статистичний матеріал не дає підстав про відхилення нульової гіпотези. Якщо обчислене значення критерію буде більше ніж критичне значення при заданому рівні значущості α‚ то відмінність генеральних сукупностей не модна пояснити тільки випадковістю вибірки. У цьому разі нульову гіпотезу відхиляють і кажуть‚ що при заданому рівні значущості відмінність є істотною.
Для статистичної перевірки гіпотез використовують ряд критеріїв: Фішера‚ Колмогорова_Смірнова‚ Стьюдента‚ Краскалла-Уолліса‚ Манна-Уїтні‚ Бартлета‚ Спірмена та ін.
В даному курсовому проекті реалізовано задачу побудови теоретичного ряду за розподілом Пуассона і обчислення ступеня згоди цього ряду з емпіричним за критерієм (хі-квадрат) Пірсона.
1.2 Методи розв'язування задачі
Критерії значущості забезпечують найкращу достовірність статистичних висновків‚ якщо вибірку беруть з нормально розподіленої генеральної сукупності. При відхиленнях від нормального розподілу точність критеріїв значущості дещо зменшується. На практиці використовують ряд розподілівё досить близьких до нормального: біноміальний, поліноміальний, розподіл Пуассона, розподіл Фішера, розподіл Стьюдента. Завданням куросового проекту є побудова теоретичного ряду з арозподілом Пуассона та перевірка гіпоетзи про узгодження теоретичного та емпіричного рядів за критерієм згоди (хі-квадрат) Пірсона.
Розподіл Пуассона є додатнім цілочисленим розподілом‚ який відіграє величезну роль в теорії ймовірностей та математичній статистиці. В якості прикладів випадкових величин‚ які розподілені за законом Пуассона‚ звичайно наводять наступні: число альфа-частинок‚ які випромінюються радіоактивним джерелом за певний проміжок часу; кількість бактерій‚ які видно під мікроскопом; число зірок в просторі і т.п. цей розподіл часто зустрічається при дослідженні проблем‚ пов'язаних з телефонною мережею.
Випадкова величина Х , яка має розподіл Пуассона, приймає значення , причому ймовірність того, що вона прийме значення , обчислюється за формулою
(5)
де , тобто параметр є математичним сподіванням випадкової величини Х . Знайдемо дисперсію випадкової величини Х :
,
тобто параметр є середнім квадратичним відхиленням величини Х . Виконавши деякі перетворення‚ отримаємо .
Через параметр можна виразити ще дві характеристики розподілу Пуассона: коефіцієнт асиметрії і ексцес .