Курсовая работа: Розвиток логічного мислення учнів у процесі вивчення геометрії

ВСТУП

РОЗДІЛ 1 ЛОГІЧНЕ МИСЛЕННЯ ТА ЙОГО СКЛАДОВІ

1.1 Логіка як наука про мислення

1.2 Поняття як перший ступінь логічних форм мислення

1.3 Судження як другий ступінь логічних форм мислення

1.4 Умовивід як третій ступінь логічних форм мислення

1.5 Основні закони логіки мислення

РОЗДІЛ 2 ВПЛИВ ВИБОРУ МЕТОДІВ НАВЧАННЯ НА РОЗВИТОК ЛОГІЧНОГО МИСЛЕННЯ УЧНІВ У ШКОЛІ

2.1 Традиційні методи навчання та їх класифікація

2.2 Класифікація методів проблемнорозвиваючого навчання

2.3 Методи логічнодидактичних ігор на уроках геометрії

РОЗДІЛ 3 РОЛЬ ОСНОВНИХ ЕЛЕМЕНТІВ ШКІЛЬНОГО УЧБОВОГО ПРОЦЕСУ ВИВЧЕННЯ ГЕОМЕТРІЇ У РОЗВИТКУ ЛОГІЧНОГО МИСЛЕННЯ УЧНІВ

3.1 Роль геометричних означень та понять

3.2 Роль логічних доведень геометричних тверджень(лем та теорем)

3.3 Роль практичного розв’язування геометричних задач

ВИСНОВКИ

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

ДОДАТКИ


ВСТУП

Відомо, що людина відрізняється від інших живих істот своїм умінням мислити, думати. Мислення – це вища форма пізнання світу. Свої думки людина виражає за допомогою мови. Навіть тоді, коли людина міркує „про себе”, вона неодмінно оформляє думки словами. Психологи називають це внутрішньою мовою.

Всебічні дослідження привели вчених до висновку, що мислення і мова становлять нерозривну єдність. Якщо ж проаналізувати мову довільної групи людей, то можна помітити, що вона не однакова: одні люди виражають свої думки лаконічно, чітко, зрозуміло, обгрунтовано, інші – розпливчасто, не завжди зрозуміло. Про перших часто говорять, що вони мислять логічно, про других цього сказати не можна. Звичайно, кожний з нас хотів би мислити логічно. Слово „логічно” походить від терміна „логіка”. Логікаце наука про форми і закони мислення. Хоч мислення має надзвичайно складну структуру, стародавні мислителі помітили, що значну частину умовиводів ( висновків) ми робимо за стандартними схемами, незалежними від того конкретного матеріалу, яким оперуємо. Так, закон силогізму , яким ми часто користаємося, твердить: „з істиності тверджень „ суть ” і „ суть ” випливає істинність твердження „ суть ” незалежно від того, які об’єкти позначено буквами ,,.

Близько 2,5 тисячі років тому в Індіїї, Китаї і Греції мислителі й філософи почали систематично вивчати загальні форми логічних умовиводів. Особливо вплинула на формування логіки як науки і на її дальший розвиток давньогрецька формальна логіка, розвинута Платоном , Арістотелем і стоїками. Велике значення для її розвитку мали праці великого грецького мислителя Арістотеля (384322 рр. до н.е.), в яких він показав що правильні міркування підпорядковані невеликій кількості законів, які не залежать від змісту

висловлень, а тільки від їх форми.

Тому традиційну, Арістотелеву, логіку називають ще формальною, а Арістотеля вважають батьком формальної логіки. Він розвинув її настільки фундаментально , що багато століть вона залишалась неперевершеним зразком логічного аналізу.

У 17 столітті видатний німецький учений Г.Лейбниц (16461716) чітко сформулював ідею побудови нової логіки, в якій би кожному поняттю відповідав певний символ, а міркування мали б форму обчислень. Проте його праці містили лише програму побудови так званої символічної логіки. Тільки в середині 19 століття англійский математик Д. Буль (18151864) частково втілив у життя ідею Лейбница: він створив алгебру логіки, в якій діють закони , подібні до законів звичайної алгебри, але буквами позначаються не числа , а висловлення.

Великий внесок у розвиток математичної логіки зробили вчені різних країн : німці Г. Фреге (18481925), Д. Гільберт (18621943), австрієць К. Гедель (народився в 1906 р.), англійці А де Морган (18061871), А. Уайтхед (18611947), Б. Рассел (18721970), поляки Я. Лукасевич ( 18781956), А. Тарський (19011983), американці А. Черч ( народився в 1903 р. ) , А. Тьюрінг (19121954), італієць Д.Пеано (18581932), росіянин П.С.Порецький (18461907), радянські математики П.С.Новиков (19011975), А.А. Марков (19031980) , А.М. Колмогоров (19031987) та інші.

Математична логіка уточнила й поновому висвітлила поняття і методи традіційної формальної логіки, істотно розширила її можливості й сферу застосування. Нині математична логіка використовується в біології, медицині , лінгвістиці, педагогіці , психології , економіці, техніці, не говорячи вже про саму математику. Надзвичайно важлива роль належить математичній логіці в розвитку обчислювальної техніки: вона використовується в конструюванні електроннообчислювальних машин (ЕОМ) і при розробці штучних мов для спілкування з машинами.

Метою дійсної курсової роботи було дослідження шляхів побудови програм навчання курсу геометрії в школі з погляду виховання логічного мислення учнів.


РОЗДІЛ 1

ЛОГІЧНЕ МИСЛЕННЯ ТА ЙОГО СКЛАДОВІ

1.1 Логіка як наука про мислення

Як самостійна наука логіка склалася більше двох тисяч років назад в ІV ст. до н.е. Її засновником є давньогрецький філософ Арістотель (384322 рр. до н.е.). В своїх працях, які отримали назву “Органон” (грец. “знаряддя пізнання”), Арістотель сформулював основні закони мислення: тотожності, протиріччя і виключеного третього – описав важливі логічні операції, розробив теорію поняття і судження, змістовно дослідив дедуктивний (силогістичний) умовивід [9]. Арістотелівське вчення про силогізм склало основу логіки предикатів (математична логіка). Античні стоїки доповнили теорію силогізму, описавши складні умовиводи (Зенон, Хрисипп та ін.). Також великий вклад зробили такі мислителі як Гален, Порфірій, Боецій. В середні віки логіка слугувала в основному релігійній схоластиці, тим самим удосконалюючи і розвиваючи свої можливості. В Новий час значний вклад зробив Ф.Бекон (15611626), розробивши на противагу дедуктивній логіці Арістотеля індуктивний метод, принцип якого виклав у праці “Новий Оганон”. Розроблені методи наукової індукції, систематизовані пізніше англійським філософом і логіком Д.С.Міллем (18061873) суттєво укріпили позиції логіки як окремої науки. Тим самим дедуктивна логіка Арістотеля і індуктивна логіка БеконаМілля склали основу загальноосвітньої дисципліни названої формальною логікою. Подальший розвиток логіки пов’язаний з іменами таких видатних філософів як Р.Декарт, Г.Лейбніц, І.Кант.

Р.Декарт (15691650) розробив ідеї дедуктивної логіки, сформулювавши правила наукового дослідження. Г.Лейбніц (16461716) сформулював закон достатньої підстави, висунув ідею математичної логіки. В другій половині ХІХ ст. в логіці починають широко застосовуватися математичні методи числення. Цей напрямок розроблений в працях Д.Буля, І.С.Джевонсонц, П.С.Порецкього, Г.Фреге, Ч.Пірса, Б.Россела, Я.Лукашевича та ін. математиків і логіків. Теоретичний аналіз дедуктивних міркувань методами числення з використанням формалізованих мов отримав назву математичної, чи символічної логіки. Символічна логіка включає багато “логік”, таких як: багатозначна логіка, модальна логіка, ймовірнісна і часова логіка.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 151
Бесплатно скачать Курсовая работа: Розвиток логічного мислення учнів у процесі вивчення геометрії