Курсовая работа: Сетевые графики

Многие крупные проекты, такие как строительство дома, изготовление станка, разработка автоматизированной системы бухгалтерского учета и т.д., можно разбить на большое количество различных операций (работ). Некоторые из этих операций могут выполняться одновременно, другие — только последовательно: одна операция после окончания другой. Например, при строительстве дома можно совместить во времени внутренние отде­лочные работы и работы по благоустройству территории, однако возводить стены можно только после того, как будет готов фундамент.

Задачи планирования работ по осуществлению некоторого проекта состоят в определении времени возможного окончания как всего проекта в целом, так и отдельных работ, образующих проект; в определении резервов времени для выполнения отдельных работ; в определении критических работ, то есть таких работ, задержка в выполнении которых ведет к задержке выполнения всего проекта в целом; в управлении ресурсами, если таковые имеются и т.п.

Пусть некоторый проект W состоит из работ V1 ,...,Vn ; для каждой работы Vk , известно, или может быть достаточно точно оценено время ее выполнения t(Vk ). Кроме того, для каждой работы Vk известен, возможно пустой, список ПРЕДШ(Vk ) работ, непосредственно предшествующих выполнению работы Vk . Иначе говоря, работа Vk может начать выполняться только после завершения всех работ, входящих в список ПРЕДШ(Vk ).

Для удобства, в список работ проекта W добавим две фиктивные работы s и p, где работа s обозначает начало всего проекта W. а работа p — завершение работ по проекту W. При этом будем считать, что работа s предшествует всем тем работам vÎW, для которых список ПРЕДШ(v) пуст, иначе говоря, для всех таких работ vÎW положим ПРЕДШ(v)={s}. Положим далее ПРЕДШ(s) =Æ, ПРЕДШ(p)={vÎW: v не входит ни в один список ПРЕДШ(w)}, то есть считаем, что работе p предшествуют все те работы, которые могут выполняться самыми последними. Время выполнения работ s и p естественно положить равными нулю: t(s)=t(p)=0.

Весь проект W теперь удобно представить в виде сети G=(V,E,c). Ориентированный взвешенный граф G=(V,E,c) называется сетью. Сеть может быть представлена матрицей весов дуг, массивами смежностей СЛЕД или ПРЕДШ, или списками СЛЕД[v] или ПРЕДШ[v]. При этом записи в списках смежности состоят из трех компонент: поля имени узла, поля веса соответствующей дуги и поля ссылки на следующую запись), где сеть G=(V,E,c) определим по правилам:

1. V=W, то есть множеством узлов объявим множество работ;

2. E={(v,w) : vÎПРЕДШ(w)}, то есть отношение предшествования задает дуги в сети;

3. c(v,w)=t(w).

Так построенную сеть G часто называют сетевым графиком выполнения работ по проекту W. Легко видеть, что списки смежностей этой сети ПРЕДШ[v] совпадают с заданными для проекта списками предшествующих работ ПРЕДШ(v).

Понятно, что сетевой график любого проекта не должен содержать контуров. Действительно, пусть узлы Vk 1 ,Vk 2 ,...,Vkr =Vk 1 образуют контур в сети G. Это означает, что работа Vk 2 не может на­чаться раньше, чем будет завершена работа Vk 1 , работа Vk 3 — раньше, чем завершится работа Vk 2 , и т.д., и, наконец, Vkr = Vk 1 — раньше, чем будет завершена работа Vkr -1 . Но тогда никакая из работ Vk 1 ,...,Vkr никогда не сможет быть выполнена. А каждый реальный проект должен допускать возможность его завершения. Следовательно, в сетевом графике нет контуров.

Отсутствие контуров в сети G позволяет пронумеровать работы проекта W таким образом, чтобы для каждой дуги (Vi ,Vj ) сети G выполнялось условие i<j, то есть каждая дуга идёт из узла с меньшим номером в узел с большим номером. Осущест­вить такую нумерацию узлов сети G можно с помощью алгоритма топологической сортировки. Поэтому в дальнейшем будем считать, что узлы в сети G топологически отсортированы.

Конечной целью построения сетевой модели является получе­ние информации о возможных сроках выполнения как отдельных работ, так и о возможном сроке выполнения всего проекта в це­лом. Обозначим через PBЫП(v) (соответственно PHAЧ(v)) наиболее ранний возможный срок выполнения работы v (соответственно наиболее ранний возможный срок начала работы v). Удобно считать, что PBЫП(s)=PHAЧ(s)=0. Поскольку на­чать выполнять работу v можно только после того, как будут выполнены все работы, предшествующие данной работе v, то получим следующие формулы для расчета значений PHAЧ(v) и PBЫП(w):

PHAЧ(v) = МАКС{PBЫП(w): wÎПРЕДШ(v)},

PBЫП(v)= PHAЧ(v) + t(v).

Значение PBЫП(p) дает наиболее ранний возможный срок завершения всего проекта в целом. Приведем запись алгоритма, непосредственно вычисляющего характеристики РНАЧ и РВЫП.

АЛГОРИТМ 1.

Данные: Сетевой график G работ V, заданный списками ПРЕДШ(v), vÎV.

Результаты: Наиболее ранние возможные сроки начала и выполнения работ РНАЧ(v), РВЫП(v), vÎV.

Шаг 1. Объявить возможные ранние сроки начала РНАЧ(v) и выполнения РВЫП(v) работ равными нулю. Текущей вершиной объявить первую вершину vk =v1.

Шаг 2. Всем вершинам v предшествующим текущей вершине vk , значение РНАЧ(vk ) присвоить максимум из значений РВЫП(v) и РНАЧ(vk ). Значение РВЫП(vk ) положить равным значению РНАЧ(vk ) плюс время выполнения самой работы текущей вершины t(vk ).

Шаг 3. Если имеется следующая вершина (работа) после текущей, то объявить ее текущей вершиной vk , иначе перейти в Шаг 5.

Шаг 4. Вернуться в Шаг 2.

Шаг 5. Выдать наиболее ранние возможные сроки начала и выполнения работ РНАЧ(v), РВЫП(v), vÎV, конец работы алгоритма.

Пусть T — плановый срок выполнения проекта W. Ясно, что Т должно удовлетворять неравенству Т >= РВЫП(Vn +1 ).

Через ПВЫП(v) (соответственно ПНАЧ(v)) обозначим наиболее поздний допустимый срок выполнения (начала) работы v, то есть такой срок, который не увеличивает срок Т реализации всего проекта.

Значения возможных и допустимых сроков выполнения работ позволяют определить резервы времени для выполнения той или иной работы. Полный резерв (иногда его называют суммарный) времени выполнения работ определяется по формуле:

PE3EPB(v)=ПHAЧ(v)-PHAЧ(v).

Значение PE3EPB(v) равно максимальной задержке в выпол­нении работы v, не влияющей на плановый срок Т. Понятно, что справедливо и такое равенство: РЕЗЕРВ(v)=ПВЫП(v)-РВЫП(v).

Работы, имеющие нулевой резерв времени, называются критическими. Через любую такую работу проходит некоторый мак­симальный s-p-путь в сети G. Критические работы характеризуются тем, что любая задержка в их выполнении автоматически ведет к увеличению времени выполнения всего проекта.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 2103
Бесплатно скачать Курсовая работа: Сетевые графики