Курсовая работа: Синтез и анализ логической схемы при кубическом задании булевой функции

Рис. 1


Дальше необходимо составить схему в универсальном базисе элементов, который в настоящее время широко применяется. Универсальный базис элементов – это система элементов, реализующая функцию И-НЕ или ИЛИ-НЕ.

Логическую схему на основе заданного универсального базиса легче всего построить по логической схеме на элементах булевого базиса элементов. Для этого нужно воспользоваться соответствием между элементами булевого базиса и заданного универсального базиса ( табл. 13 ). В данном случае используется базис ИЛИ-НЕ.

Таблица 13

Булевой
Базис
Универсальный базис ИЛИ-НЕ

Заменяя элементы, не следует стремиться к полной замене. Если производить замену формально ( один к одному ), то в связи между элементами окажется два последовательно включенных инвертора, что равносильно их отсутствию.

Логическая схема на основе элементов базиса ИЛИ-НЕ показана на рис.2.

функция покрытие логический кубический


Рис. 2

4. НАХОЖДЕНИЕ ПО ПИ-АЛГОРИТМУ РОТА ЕДИНИЧНОГО ПОКРЫТИЯ

Построенную логическую схему нужно проверить, для этого находится покрытие схемы. В табл. 15 отражено покрытие схемы, представленной на рис. 2. При нахождении покрытия схемы используются покрытия отдельных элементов схемы ( табл. 14 ).

Таблица 14

Элемент Таблица истинности Покрытие

ИЛИ

1 2 3

0 0 0

0 1 1

1 0 1

1 1 1

1 2 3

0 0 0

Х 1 1

1 Х 1

И

0 0 0

0 1 0

1 0 0

1 1 1

Х 0 0

0 Х 0

1 1 1

ИЛИ-НЕ

0 0 1

0 1 0

1 0 0

1 1 0

0 0 1

Х 1 0

1 Х 0

Обозначения: 1,2 – входы, 3 – выход элементов.

Таблица 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Примечания
Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х 1 С(f)
0 1 П19 1 Ú 18
0 1 Пересечение с (Сf ) (*)

Х Х 1 0 1

Х 1 Х 0 1

1 Х Х 0 1

П18 0 Ú 14, 15, 17

Х Х 1 0 1

Х 1 Х 0 1

1 Х Х 0 1

Пересечение с (*) (**)
1 Х Х 0 1 0 1 П17 1 Ú 5, 16

1

1

1

Х Х 0 1 0 1

Х 1 0 1 0 1

1 Х 0 1 0 1

Пересечение с (**) (***)

Х 1 Х Х 0 1 0 1

1 Х Х Х 0 1 0 1

П16 0 Ú 8, 13

1

1

1

1

1

1

Х 1 Х Х 0 1 0 1

1 Х Х Х 0 1 0 1

Х 1 Х 1 0 1 0 1

1 Х Х 1 0 1 0 1

Х 1 1 Х 0 1 0 1

1 Х 1 Х 0 1 0 1

Пересечение с (***) (****)
0 0 0 0 1 1 Х Х Х 0 1 0 1 П8 1 Ú 1, 3, 4, 6, 7

0 Х 0 0 1 0 1 0 Х 0 0 1 0 1

0 Х 0 0 1 0 1

0 Х 0 0 1 0 1

0 Х 0 0 1 0 1

0 Х 0 0 1 0 1

1 1 Х Х 0 1 0 1

1 Х Х Х 0 1 0 1

1 1 Х 1 0 1 0 1

1 Х Х 1 0 1 0 1

1 1 1 Х 0 1 0 1

1 Х 1 Х 0 1 0 1

Пересечение с (****) (*****)
1 Х 0 1 Х Х 0 1 0 1 П13 1 Ú 3, 10

1 1

1 1

1 1

1 1

1 1

1 1

Х 0 1 Х Х 0 1 0 1

1 0 1 Х Х 0 1 0 1

Х 0 1 Х 1 0 1 0 1

1 0 1 Х 1 0 1 0 1

Х 0 1 1 Х 0 1 0 1

1 0 1 1 Х 0 1 0 1

Пересечение с (****) (*****’)

Х Х Х Х Х Х Х

Х Х Х Х Х Х 0

Х 1 0 1 Х Х 0 1 0 1

Х Х 0 1 Х Х 0 1 0 1

П10 0 Ú 7, 9

Х Х 1 Х 1 Х Х

Х Х 1 Х 1 Х 0

Х Х 1 Х 1 Х Х

Х Х 1 Х 1 Х 0

Х Х 1 Х 1 Х Х

Х Х 1 Х 1 Х 0

Х Х 1 Х 1 Х Х

Х 1 0 1 Х Х 0 1 0 1

Х Х 0 1 Х Х 0 1 0 1

1 1 0 1 Х Х 0 1 0 1

1 Х 0 1 Х Х 0 1 0 1

Х 1 0 1 Х 1 0 1 0 1

Х Х 0 1 Х 1 0 1 0 1

1 1 0 1 Х 1 0 1 0 1

Пересечение с (*****’) (******)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Примечания

Х Х 1 Х 1 Х 0

Х Х 1 Х 1 Х Х Х Х 1 Х 1 Х 0

Х Х 1 Х 1 Х Х

Х Х 1 Х 1 Х 0

1 Х 0 1 Х 1 0 1 0 1

Х 1 0 1 1 Х 0 1 0 1 Х Х 0 1 1 Х 0 1 0 1

1 1 0 1 1 Х 0 1 0 1

1 Х 0 1 1 Х 0 1 0 1

Пересечение с (*****’) (******)
Х Х Х 1 Х 1 Х Х 1 0 1 Х Х 0 1 0 1 П9 1 Ú 4, 6

Х Х 1 1 1 1 Х

Х Х 1 1 1 1 0

Х Х 1 1 1 1 Х

Х Х 1 1 1 1 0

Х Х 1 1 1 1 Х

Х Х 1 1 1 1 0

Х Х 1 1 1 1 Х

Х Х 1 1 1 1 0

Х Х 1 1 1 1 Х

Х Х 1 1 1 1 0

Х Х 1 1 1 1 Х

Х Х 1 1 1 1 0

Х 1 0 1 Х Х 0 1 0 1

Х 1 0 1 Х Х 0 1 0 1

1 1 0 1 Х Х 0 1 0 1

1 1 0 1 Х Х 0 1 0 1

Х 1 0 1 Х 1 0 1 0 1

Х 1 0 1 Х 1 0 1 0 1

1 1 0 1 Х 1 0 1 0 1

1 1 0 1 Х 1 0 1 0 1

Х 1 0 1 1 Х 0 1 0 1

Х 1 0 1 1 Х 0 1 0 1

1 1 0 1 1 Х 0 1 0 1

1 1 0 1 1 Х 0 1 0 1

Пересечение с (******) (*******)
0 0 0 0 1 Х 0 Х 0 1 П14 1 Ú 2, 4, 7, 11

0 0 0

0 0 0

0 0 0

0 1 Х 0 Х 0 1

0 1 Х 0 1 0 1

0 1 1 0 Х 0 1

Пересечение с (**) (***’)

Х Х Х Х 0 Х Х

0 Х Х Х Х Х Х

0 1 Х 0 Х 0 1

0 1 Х 0 Х 0 1

П11 0 Ú 1, 5

Х 0 Х 0 0 Х 0

0 0 Х 0 Х Х 0

Х 0 Х 0 0 Х 0

0 0 Х 0 Х Х 0

Х 0 Х 0 0 Х 0

0 0 Х 0 Х Х 0

0 1 Х 0 Х 0 1

0 1 Х 0 1 0 1

0 1 1 0 Х 0 1

0 1 Х 0 Х 0 1

0 1 Х 0 1 0 1

0 1 1 0 Х 0 1

Пересечение с (***') (****’)
1 1 1 0 Х 1 0 Х 0 1 П15 1 Ú 1, 3, 6, 12

1 1 1

1 1 1

1 1 1

0 Х 1 0 Х 0 1

0 Х 1 0 1 0 1

0 1 1 0 Х 0 1

Пересечение с (**) (***’’)

Х Х Х Х Х Х 1

Х 0 Х Х Х Х Х

0 Х 1 0 Х 0 1

0 Х 1 0 Х 0 1

П12 0 Ú 2, 7

1 Х 1 Х Х 1 1

1 0 1 Х Х 1 Х

1 Х 1 Х Х 1 1

1 0 1 Х Х 1 Х

1 Х 1 Х Х 1 1

1 0 1 Х Х 1 Х

0 Х 1 0 Х 0 1

0 Х 1 0 1 0 1

0 1 1 0 Х 0 1

0 Х 1 0 Х 0 1

0 Х 1 0 1 0 1

0 1 1 0 Х 0 1

Пересечение с (***’') (****’’)

Как следует из табл. 15, ищется покрытие схемы, обеспечивающее единичное значение выходной функции. Это означает, что на выходе элемента 19 должна быть единица (соответственно, на выходе элемента 18 должен быть 0). По табл. 15 можно увидеть что значение 0 на выходе элемента 18 будет, если на выходе хотя бы одного из элементов 14, 15, или 17 будет 1. Далее осуществляется пересечение покрытия элемента 18 с покрытием элемента 19. Затем последовательно фиксируются покрытия и пересечения применительно к элементам 17, 14 и 15. Результаты пересечения покрытий отмечаются «звездочками».

Покрытие схемы осуществляется по ветвям. После покрытия элементов первого яруса находятся кубы множества L-экстремалей Z. В табл. 15 эти кубы выделены подчеркиванием.

Для большей наглядности выпишем эти кубы:

0X00101

XX1X1X0

XX1111X

X0X00X0

00X0XX0

1X1XX11

101XX1X

Это найденное покрытие точно совпадает с ранее полученным покрытием Е. Следовательно, факторизация минимального покрытия и построение логической схемы осуществлены верно.

Далее необходимо произвести изменение схемы с учетом конкретных характеристик элементов данного универсального базиса, а именно Квх (коэффициент входа) и Кр (коэффициент разветвления). Современные элементы имеют сравнительно большие значения Квх и Кр , но в данном случае они выбраны малыми: Квх = 4; Кр = 2.

К-во Просмотров: 467
Бесплатно скачать Курсовая работа: Синтез и анализ логической схемы при кубическом задании булевой функции