Курсовая работа: Синтез и свойства комплексов железа (II) и железа (III)

Цель данной работы состоит в изучении строения и свойств комплексных соединений железа (II) и железа (III).

В ходе выполнения работы были поставлены следующие задачи:

1) изучение литературных данных о физических свойствах элементов VIIIB группы и их соединений, в частности, соединений железа;

2) анализ комплексных соединений железа (II) и железа (III) с различными лигандами с точки зрения теории кристаллического поля;

3) изучение литературных данных о строении цианидных комплексов железа (спектры Мессбауэра).

В ходе литературного поиска рассматриваются:

1) теория кристаллического поля;

2) эффект Мессбауэра;

3) комплексообразование в растворах.

В экспериментальной части предпринята попытка получения кристалла «берлинской лазури» - «турнбулевой сини», получены комплексы триоксалатоферрата(III) и хелатный комплекс.

1. Литературный обзор

1.1 Теория кристаллического поля

железо соединение лиганда кристаллическое поле

Для теоретического изучения комплексных соединений (КС) широко используется теория кристаллического поля (ТКП). Она была предложена Бетэ в 1929 г для кристаллов, а с 50-хх годов прошлого века стала широко использоваться в химии комплексных соединений [1].

Теория кристаллического поля исходит из того, что природа лигандов и их расположение вокруг центрального иона (симметрия комплекса) уменьшают вырождение d -орбиталей и изменяют их энергию. Рассмотрим это на примере комплексного иона октаэдрической симметрии [ML6 ]n+ , в котором центральный атом имеет электронную конфигурацию d1 . Ион M+ расположен в центре октаэдра, совпадающем с началом прямоугольной системы координат, а лиганды – в вершинах октаэдра.

Орбитали dx²–y² и dz² совпадают с координатными осями, а остальные три (dxy , dxz , dyz ) проходят вдоль биссектрис соответствующих координатных углов. B отсутствие лигандов все пять орбиталей были энергетически равноценны. Но с появлением лигандов в вершинах октаэдра электроны, находящиеся на орбиталях dx²–y² и dz² , испытывают сильное отталкивание от отрицательно заряженных лигандов или от отрицательного конца полярной молекулы. Другие три орбитали попадают в области с минимальными значениями отрицательного потенциала, поэтому вероятность нахождения электрона на орбиталях dxy , dxz , dyz будет больше. Это соответствует тому, что под действием лигандов прежде энергетически равноценные d -орбитали разделились на две группы: орбитали dx²–y² и dz²(dγ) , энергетически невыгодные для электрона, и орбитали dxy , dxz , dyz(dε) с меньшей энергией. Схема расщепления d -орбиталей октаэдрическим (тетраэдрическим) окружением показана на рис. 1. Разность между и -уровнями обозначается через Δокт (Δтетр ) и называется параметром расщепления. В научной литературе орбитали обычно и обозначают deg и dt2g , а параметр расщепления 10Dq [1].

рис 1. Диаграмма расщепления d-орбиталей в поле лигандов.

Из рис. 1 следует, что заселение любой -орбитали одним электроном приводит к уменьшению на 0,4Δокт энергии октаэдрического комплекса, т. е. стабилизирует его по сравнению со сферически симметричным ионом, а заселение электроном любой из -орбиталей этот комплекс дестабилизирует на 0,6Δокт . В тетраэдрическом поле порядок расщепления d -орбиталей будет обратным, а потому энергия стабилизации на один электрон будет 0,6Δтетр , а дестабилизации - 0,4 Δтетр . Величина понижения энергии координационного соединения в результате перераспределения d -электронов по - и -орбиталям называется энергией стабилизации кристаллическим полем (ЭСКП). Эта энергия зависит от числа электронов на dε- и -орбиталях и вычисляется по формулам [1]:

ЭСКП(окт) = (0,4n – 0,6m) Δокт

ЭСКП(тетр) = (0,6n – 0,4m) Δтетр

где n – число электронов на нижнем подуровне, m – число электронов на верхнем подуровне. Параметр расщепления в октаэдрическом поле больше, чем в тетраэдрическом, содержащем те же лиганды, и равен Δокт = 9/4 Δтетр

Параметр расщепления Δ зависит от размеров центрального иона, его заряда, электронной конфигурации и от природы лиганда. Экспериментально его определяют по спектрам поглощения комплексных соединений. Возбуждение электрона с нижнего уровня на верхний сопровождается поглощением энергии и появлением в спектре полосы, максимум которой соответствует энергии расщепления Δ . Значение Δ обычно выражают в волновых числах ν = 1/λ см–1 . Большинство значений Δ лежит в пределах о 10000 до 30000 см–1 . (1 см–1 соответствует энергии E = hνc = 6,26∙10–34 ∙3∙1010 ∙1 = 2,0∙10–23 Дж = 11,96 Дж∙моль–1 = 1,25∙10–4 эВ) В ряду 3d- , 4d- , 5d- элементов при прочих равных условиях Δ увеличивается от периода к периоду на 30–35 %. Например, для [Co(NH3 )6 ]3+ Δ = 23000 см–1 , для [Rh(NH3 )6 ]3+ Δ = 34000 см–1 , для [Ir(NH3 )6 ]3+ Δ = 41000 см–1 . Величина Δ возрастает при переходе от комплексов двухрядных ионов 3d -элементов к трехрядным. Так для [Fe(H2 O)6 ]2+ и [Fe(H2 O)6 ]3+ значения Δ равны соответственно 10400 см–1 и 13700 см–1 . Из спектроскопических измерений была найдена последовательность расположения лигандов по возрастанию их влияния на величину расщепления Δ, называемая спектрохимическим рядом лигандов [2]:

I- < Br- < SCN- « Cl- < F- < OH- « ONO- < C2 O4 2- < OH2 < NCS- < ЭДТА4- < Py « NH3 < En < NO2 - < ДМГ < CN- < CO.


Некоторые лиганды (роданид, нитрит) имеют два варианта присоединения и потому два места в ряду.

В октаэдрических комплексах, образуемых ионами с электронными конфигурациями d4 , d5 , d6 , d7 , возможно различное размещение электронов – либо высоко-, либо низкоспиновое в зависимости от параметра расщепления Δ и энергии спаривания P . Последняя определяется как разность энергий межэлектронного взаимодействия низкоспиновой (НС) и высокоспиновой (ВС) конфигураций, деленная на число спаривающихся электронов, и приводится в справочниках. Очевидно, что низкоспиновое состояние реализуется тогда, когда P < Δ , а высокоспиновое – когда P > Δ . Сведения о некоторых свойствах комплексов d-элементов представлены в таблице 1[1].

Таблица 1.

Электронная конфигурация координ. иона Ион-комплексообразователь P, см–1 Лиганды Δ , см–1 Электр. конфигурация октаэдр. иона Спиновое состояние
d4 Cr2+ 23500 H2 O 13900 BC
Mn3+ 28000 H2 O 21000 BC
d5 Mn2+ 25200 H2 O 7800 BC
Fe3+ 30000 H2 O 13700 BC
d6 Fe2+ 17700 H2 O 10400 BC
17700 CN 33000 HC
Co3+ 21000 F 1300 BC
21000 NH3 23000 HC
d7 Co2+ 22500 H2 O 10100 BC

В рамках ТКП высокоспиновый комплекс [Fe(H2 O)6 ]2+ с электронной конфигурацией будет менее устойчив (ЭСКП = 0,4Δокт ), чем низкоспиновый [Fe(H2 O)6 ]3+ (электронная конфигурация ЭСКП = 2,4 Δокт ).

Распределение электронов между нижним ( ) и верхним ( ) уровнями в тетраэдрических комплексах также зависит от соотношения Δ и P , но поскольку Δтетр < Δокт , тетраэдрические комплексы обычно остаются высокоспиновыми.

В отличие от метода валентных связей, ТКП, основываясь на электронной конфигурации центрального атома, положении лигандов в спектрохимическом ряду и симметрии комплекса, позволяет не только объяснять, но и предсказывать магнитные и спектроскопические свойства комплексов.

С физической точки зрения ТКП является весьма приближенной, поскольку учитывает только электростатическое взаимодействие между комплексообразователем и лигандами. ТКП не дает объяснения устойчивости комплексов с электронными конфигурациями центрального атома d0 и d10 , однако существование подобных комплексов легко объяснимо с позиций метода молекулярных орбиталей.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 425
Бесплатно скачать Курсовая работа: Синтез и свойства комплексов железа (II) и железа (III)