Курсовая работа: Системы принятия решений

Если проблема имеет много критериев, то чтобы вычислить общую оценку из оценок по разным критериям, необходимо дать каждому критерию коэффициент, равный его значимости и показывающий его удельный вес в общей картине оцени. После этого можно вычислит общую оценку, равную суме произведения всех оценок на их удельный вес.


1.7 Поиск решения

Самый общий способ поиска оптимального решения заключается в поиске такого варианта решения, при котором общая оценка принимает самое благоприятное значение. Если число вариантов конечно-то их можно перебрать, а если бесконечно, то можно приблизиться к оптимальному варианту до заданной точности. Для нахождения оптимального решения часто используется методы математического программирования и теории оптимизации.

Также для поиска лучшего решения используется голосование, методы сравнения, дерево решений, графоаналитический метод, статистические методы, теория игр, решающие таблицы и многие другие методы предназначенные для частых случаев.

1.8 Извлечение уроков из принимаемых решений

После того как решение найдено, важно собрать и сохранить на будущее накопленный багаж знаний. Он поможет в дальнейшем при принятии решения, уточнит и ускорит его.

Особенно просто это получается при фиксированных правилах принятия решения. В правилах, которые сформулировали мы сами или получили от других лиц, например, в виде бинарных решающих матриц или решающих таблиц. Эти методы можно применять в случаях часто повторяющихся однотипных решений, когда, как в рассматриваемых ситуациях, меняются лишь параметры.

2. Практическое задание

2.1 Задание

Фирма рекламирует свою продукцию с использованием четырех средств: телевизора, радио, газет и афиш. Из различных рекламных экспериментов, которые проводились в прошлом, известно, что эти средства приводят к увеличению прибыли соответственно на 10, 3, 7 и 4 дол. в расчете на 1 дол., затраченный на рекламу. Распределение рекламного бюджета по различным средствам, подчинено следующим ограничениям:

а) полный бюджет не должен превосходить 500000 дол.;

б) следует расходовать не более 40% бюджета на телевидение и не более 20% бюджета на афиши;

в) вследствие привлекательности для подростков радио на него следует расходовать, по крайней мере, половину того, что планируется на телевидение.

Сколько средств следует направить на каждый вид рекламы, чтобы прибыль была максимальной.

2.2 Математическая модель

Решение представляется, как описание – сколько тратиться средств на каждый тип рекламы, при чем средства не могут быть отрицательными, т.е. нельзя забирать средства. Обозначим их как свободные переменными в соответствии с формулой 2.1.

(2.1)

где xi – объем денежных средств идущих на рекламу i- го типа;

n – количество типов рекламы, используемый предприятием.

Так как предприятие использует только четыре вида рекламных средств – телевиденье, радиовещание, газета, афиша-то n равно четырем.

Критерием задачи, и значит целевой функцией, является прибыль, приносимая рекламой. Нашей задачей максимизировать эту прибыль.

На основе данных, полученных из задания, можно построить целевую функцию в соответствии с формулой 2.2.

(2.2)

где W – целевая функция – прибыль от;

x1 – средства затраченные на телевизионную рекламу;

x2 – средства затраченные на радио рекламу;

x3 – средства затраченные на газетную рекламу;

x4 – средства затраченные на афишную рекламу.

В задание есть следующие ограничения: полный бюджет не должен превосходить 500 000 дол., т.е. дол.; следует расходовать не более 40% бюджета на телевидение и не более 20% бюджета на афиши, т.е. и ; вследствие привлекательности для подростков радио на него следует расходовать, по крайней мере, половину того, что планируется на телевидение, т.е. .

К-во Просмотров: 432
Бесплатно скачать Курсовая работа: Системы принятия решений