Курсовая работа: Сканирующая зондовая микроскопия

Введение

В настоящее время бурно развивается научно-техническое направление - нанотехнология, охватывающее широкий круг, как фундаментальных, так и прикладных исследований. Это принципиально новая технология, способная решать проблемы в таких разных областях, как связь, биотехнология, микроэлектроника и энергетика. Сегодня больше сотни молодых компаний разрабатывают нанотехнологические продукты, которые выйдут на рынок в ближайшие два - три года.

Нанотехнологии станут ведущими, в 21-м веке, технологиями и будут способствовать развитию экономики и социальной сферы общества, они могут стать предпосылкой новой промышленной революции. В предыдущие двести лет прогресс в промышленной революции был достигнут ценой затрат около 80% ресурсов Земли. Нанотехнологии позволят значительно уменьшить объем потребления ресурсов и не окажут давления на окружающую среду, они будут играть ведущую роль в жизни человечества, как, например, компьютер стал неотъемлемой частью жизни людей [1].

Прогресс в нанотехнологии стимулировался развитием экспериментальных методов исследований, наиболее информативными из которых являются методы сканирующей зондовой микроскопии, изобретением и в особенности распространением которых мир обязан нобелевским лауреатам 1986 года – профессору Генриху Рореру и доктору Герду Биннигу [2].

Мир был заворожен открытием столь простых методов визуализации атомов, да еще с возможностью манипуляции ими. Многие исследовательские группы принялись конструировать самодельные приборы и экспериментировать в данном направлении. В результате был рожден ряд удобных схем приборов, были предложены различные методы визуализации результатов взаимодействия зонд-поверхность, такие как: микроскопия латеральных сил, магнитно-силовая микроскопия, микроскопия регистрации магнитных, электростатических, электромагнитных взаимодействий. Получили интенсивное развитие методы ближнепольной оптической микроскопии. Были разработаны методы направленного, контролируемого воздействия в системе зонд-поверхность, например, нанолитография – изменения происходят на поверхности под действием электрических, магнитных воздействий, пластических деформаций, света в системе зонд-поверхность. Были созданы технологии производства зондов с заданными геометрическими параметрами, со специальными покрытиями и структурами для визуализации различных свойств поверхностей [1].

Сканирующая зондовая микроскопия (СЗМ) – один из мощных современных методов исследования морфологии и локальных свойств поверхности твердого тела с высоким пространственным разрешением. За последние 10 лет сканирующая зондовая микроскопия превратилась из экзотической методики, доступной лишь ограниченному числу исследовательских групп, в широко распространенный и успешно применяемый инструмент для исследования свойств поверхности. В настоящее время практически ни одно исследование в области физики поверхности и тонкопленочных технологий не обходится без применения методов СЗМ. Развитие сканирующей зондовой микроскопии послужило также основой для развития новых методов в нанотехнологии – технологии создания структур с нанометровыми масштабами [3].


1. Историческая справка

Для наблюдения мелких объектов голландец Антони ван Левенгук в 17 веке изобрел микроскоп, открыв мир микробов. Его микроскопы был несовершенными и давали увеличение от 150 до 300 раз. Но е го последователи усовершенствовали этот оптический прибор, заложив фундамент для многих открытий в биологии, геологии, физике. Однако в конце 19 века (1872 г.) немецкий оптик Эрнст Карл Аббе показал, что из-за дифракции света разрешающая способность микроскопа (то есть минимальное расстояние между объектами, когда они еще не сливаются в одно изображение) ограничена длиной световой волны (0.4 – 0.8 мкм). Тем самым он сэкономил массу усилий оптиков, пытавшихся сделать более совершенные микроскопы, но разочаровал биологов и геологов, лишившихся надежды получить прибор с увеличением выше 1500x.

История создания электронного микроскопа – замечательный пример того, как самостоятельно развивающиеся области науки и техники могут, обмениваясь полученной информацией и объединяя усилия, создавать новый мощный инструмент научных исследований. Вершиной классической физики была теория электромагнитного поля, которая объяснила распространение света, возникновение электрических и магнитных полей, движение заряженных частиц в этих полях как распространение электромагнитных волн. Волновая оптика сделала понятными явление дифракции, механизм формирования изображения и игру факторов, определяющих разрешение, в световом микроскопе. Успехам в области теоретической и экспериментальной физики мы обязаны открытием электрона с его специфическими свойствами. Эти отдельные и, казалось бы, независимые пути развития привели к созданию основ электронной оптики, одним из важнейших приложений которой являлось изобретение ЭМ в 1930-х годах. Прямым намеком на такую возможность можно считать гипотезу о волновой природы электрона, выдвинутую в 1924 Луи де Бройлем и экспериментально подтвержденную в 1927 К.Дэвиссоном и Л.Джермером в США и Дж.Томсоном в Англии. Тем самым была подсказана аналогия, позволившая построить ЭМ по законам волновой оптики. Х.Буш обнаружил, что с помощью электрических и магнитных полей можно формировать электронные изображения. В первые два десятилетия 20 в. были созданы и необходимые технические предпосылки. Промышленные лаборатории, работавшие над электронно-лучевым осциллографом, дали вакуумную технику, стабильные источники высокого напряжения и тока, хорошие электронные эмиттеры [2].

В 1931 Р.Руденберг подал патентную заявку на просвечивающий электронный микроскоп, а в 1932 М.Кнолль и Э.Руска построили первый такой микроскоп, применив магнитные линзы для фокусировки электронов. Этот прибор был предшественником современного оптического просвечивающего электронного микроскопа (ОПЭМ). (Руска был вознагражден за свои труды тем, что стал лауреатом Нобелевской премии по физике за 1986.) В 1938 Руска и Б. фон Боррис построили прототип промышленного ОПЭМ для фирмы «Сименс-Хальске» в Германии; этот прибор в конце концов позволил достичь разрешения 100 нм. Несколькими годами позднее А.Пребус и Дж.Хиллер построили первый ОПЭМ высокого разрешения в Торонтском университете (Канада).

Широкие возможности ОПЭМ почти сразу же стали очевидны. Его промышленное производство было начато одновременно фирмой «Сименс-Хальске» в Германии и корпорацией RCA в США. В конце 1940-х годов такие приборы стали выпускать и другие компании [2].

РЭМ в его нынешней форме был изобретен в 1952 Чарльзом Отли. Правда, предварительные варианты такого устройства были построены Кноллем в Германии в 1930-х годах и Зворыкиным с сотрудниками в корпорации RCA в 1940-х годах, но лишь прибор Отли смог послужить основой для ряда технических усовершенствований, завершившихся внедрением в производство промышленного варианта РЭМ в середине 1960-х годов. Круг потребителей такого довольно простого в обращении прибора с объемным изображением и электронным выходным сигналом расширился с быстротой взрыва. В настоящее время насчитывается добрый десяток промышленных изготовителей РЭМ'ов на трех континентах и десятки тысяч таких приборов, используемых в лабораториях всего мира. В 1960-х годах разрабатывались сверхвысоковольтные микроскопы для исследования более толстых образцов. Лидером этого направления разработок был Г.Дюпуи во Франции, где в 1970 был введен в действие прибор с ускоряющим напряжением, равным 3,5 млн. вольт. РТМ был изобретен Г.Биннигом и Г.Рорером в 1979 в Цюрихе. Этот весьма простой по устройству прибор обеспечивает атомное разрешение поверхностей. За свою работу по созданию РТМ Бинниг и Рорер (одновременно с Руской) получили Нобелевскую премию.

В 1986 году Рорером и Биннигом был изобретен сканирующий зондовый микроскоп. С момента своего изобретения СТМ широко используется учеными самых разных специальностей, охватывающих практически все естественнонаучные дисциплины начиная от фундаментальных исследований в области физики, химии, биологии и до конкретных технологических приложений. Принцип действия СТМ настолько прост, а потенциальные возможности так велики, что невозможно предсказать его воздействие на науку и технику даже ближайшего будущего.

Как оказалось в дальнейшем, практически любые взаимодействия острийного зонда с поверхностью (механические, магнитные) могут быть преобразованы с помощью соответствующих приборов и компьютерных программ в изображение поверхности [2].

Установка сканирующего зондового микроскопа состоит из нескольких функциональных блоков, изображенных на рис. 1. Это, во-первых, сам микроскоп с пьезоманипулятором для управления зондом, преобразователем туннельного тока в напряжение и шаговым двигателем для подвода образца; блок аналого-цифровых и цифро-аналоговых преобразователей и высоковольтных усилителей; блок управления шаговым двигателем; плата с сигнальным процессором, рассчитывающим сигнал обратной связи; компьютер, собирающий информацию и обеспечивающий интерфейс с пользователем. Конструктивно блок ЦАПов и АЦП установлен в одном корпусе с блоком управления шаговым двигателем. Плата с сигнальным процессором (DSP – Digital Signal Processor) ADSP 2171 фирмы Analog Devices установлена в ISA слот расширения персонального компьютера [4].

Общий вид механической системы микроскопа представлен на рис. 2. В механическую систему входит основание с пьезоманипулятором и системой плавной подачи образца на шаговом двигателе с редуктором и две съемные измерительные головки для работы в режимах сканирующей туннельной и атомно-силовой микроскопии. Микроскоп позволяет получить устойчивое атомное разрешение на традиционных тестовых поверхностях без применения дополнительных сейсмических и акустических фильтров [4].


2. Принципы работы сканирующих зондовых микроскопов

В сканирующих зондовых микроскопах исследование микрорельефа поверхности и ее локальных свойств проводится с помощью специальным образом приготовленных зондов в виде игл. Рабочая часть таких зондов (острие) имеет размеры порядка десяти нанометров. Характерное расстояние между зондом и поверхностью образцов в зондовых микроскопах по порядку величин составляет 0,1 – 10 нм. В основе работы зондовых микроскопов лежат различные типы взаимодействия зонда с поверхностью. Так, работа туннельного микроскопа основана на явлении протекания туннельного тока между металлической иглой и проводящим образцом; различные типы силового взаимодействия лежат в основе работы атомно-силового, магнитно-силового и электросилового микроскопов. Рассмотрим общие черты, присущие различным зондовым микроскопам. Пусть взаимодействие зонда с поверхностью характеризуется некоторым параметром Р. Если существует достаточно резкая и взаимно однозначная зависимость параметра Р от расстояния зонд-образец, то данный параметр может быть использован для организации системы обратной связи (ОС), контролирующей расстояние между зондом и образцом. На рис. 3 схематично показан общий принцип организации обратной связи СЗМ [5].

Система обратной связи поддерживает значение параметра Р постоянным, равным величине Р , задаваемой оператором. Если расстояние зонд-поверхность изменяется, то происходит изменение параметра Р. В системе ОС формируется разностный сигнал, пропорциональный величине ΔР = Р - Р, который усиливается до нужной величины и подается на исполнительный элемент ИЭ. Исполнительный элемент отрабатывает данный разностный сигнал, приближая зонд к поверхности или отодвигая его до тех пор, пока разностный сигнал не станет равным нулю. таким образом можно поддерживать расстояние зонд – образец с большой точностью. При перемещении зонда вдоль поверхности образца происходит изменение параметра взаимодействия Р, обусловленное рельефом поверхности. Система ОС отрабатывает эти изменения, так что при перемещении зонда в плоскости Х, Y сигнал на исполнительном элементе оказывается пропорциональным рельефу поверхности. Для получения СЗМ изображения осуществляют специальным образом организованный процесс сканирования образца. При сканировании зонд вначале движется над образцом вдоль определенной линии (строчная развертка), при этом величина сигнала на исполнительном элементе, пропорциональная рельефу поверхности, записывается в память компьютера. Затем зонд возвращается в исходную точку и переходит на следующую строку сканирования (кадровая развертка), и процесс повторяется вновь. Записанный таким образом при сканировании сигнал обратной связи обрабатывается компьютером, а затем СЗМ изображение рельефа поверхности строится с помощью средств компьютерной графики. Наряду с исследованием рельефа поверхности, зондовые микроскопы позволяют изучать различные свойства поверхности: механические, электрические, магнитные, оптические и другие [5].


3. Сканирующие элементы (сканеры) зондовых микроскопов

3.1 Сканирующие элементы

Для работы зондовых микроскопов необходимо контролировать рабочее расстояние зонд-образец и осуществлять перемещения зонда в плоскости образца с высокой точностью (на уровне долей ангстрема). Эта задача решается с помощью специальных манипуляторов – сканирующих элементов (сканеров). Сканирующие элементы зондовых микроскопов изготавливаются из пьезоэлектриков – материалов, обладающих пьезоэлектрическими свойствами. Пьезоэлектрики изменяют свои размеры во внешнем электрическом поле. Уравнение обратного пьезоэффекта для кристаллов записывается в виде:

u = d * E

где u – тензор деформации, E– компоненты электрического поля, d – компоненты тензора пьезоэлектрических коэффициентов. Вид тензора пьезоэлектрических коэффициентов определяется типом симметрии кристаллов [5].

В различных технических приложениях широкое распространение получили преобразователи из пьезокерамических материалов. Пьезокерамика представляет собой поляризованный поликристаллический материал, получаемый методами спекания порошков из кристаллических сегнетоэлектриков. Поляризация керамики производится следующим образом. Керамику нагревают выше температуры Кюри (для большинства пьезокерамик эта температура менее 300С), а затем медленно охлаждают в сильном (порядка 3 кВ/см) электрическом поле. После остывания пьезокерамика имеет наведенную поляризацию и приобретает способность изменять свои размеры (увеличивать или уменьшать в зависимости от взаимного направления вектора поляризации и вектора внешнего электрического поля).

В сканирующей зондовой микроскопии широкое распространение получили трубчатые пьезоэлементы (рис. 4). Они позволяют получать достаточно большие перемещения объектов при относительно небольших управляющих напряжениях. Трубчатые пьезоэлементы представляют собой полые тонкостенные цилиндры, изготовленные из пьезокерамических материалов. Обычно электроды в виде тонких слоев металла наносятся на внешнюю и внутреннюю поверхности трубки, а торцы трубки остаются непокрытыми.

Под действием разности потенциалов между внутренним и внешним электродами трубка изменяет свои продольные размеры. В этом случае продольная деформация под действием радиального электрического поля может быть записана в виде:

u =

где l – длина трубки в недеформируемом состоянии. Абсолютное удлинение пьезотрубки равно

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 495
Бесплатно скачать Курсовая работа: Сканирующая зондовая микроскопия