Курсовая работа: Сканирующая зондовая микроскопия

где h – толщина стенки пьезотрубки, V – разность потенциалов между внутренним и внешним электродами. Таким образом, при одном и том же напряжении V удлинение трубки будет тем больше, чем больше ее длина и чем меньше толщина ее стенки [5].

Соединение трех трубок в один узел позволяет организовать прецизионные перемещения зонда микроскопа в трех взаимно перпендикулярных направлениях. Такой сканирующий элемент называется триподом.

Недостатками такого сканера являются сложность изготовления и сильная асимметрия конструкции. На сегодняшний день в сканирующей зондовой микроскопии наиболее широко используются сканеры, изготовленные на основе одного трубчатого элемента. Общий вид трубчатого сканера и схема расположения электродов представлены на рис. 5. Материал трубки имеет радиальное направление вектора поляризации.

Внутренний электрод обычно сплошной. Внешний электрод сканера разделен по образующим цилиндра на четыре секции. При подаче противофазных напряжений на противоположные секции внешнего электрода (относительно внутреннего) происходит сокращение участка трубки в том месте, где направление поля совпадает с направлением поляризации, и удлинение там, где они направлены в противоположные стороны. Это приводит к изгибу трубки в соответствующем направлении. Таким образом осуществляется сканирование в плоскости Х, Y. Изменение потенциала внутреннего электрода относительно всех внешних секций приводит к удлинению или сокращению трубки по оси Z. Таким образом, можно организовать трехкоординатный сканер на базе одной пьезотрубки. Реальные сканирующие элементы имеют часто более сложную конструкцию, однако принципы их работы остаются теми же самыми [5].

Широкое распространение получили также сканеры на основе биморфных пьезоэлементов. Биморф представляет собой две пластины пьезоэлектрика, склеенные между собой таким образом, что вектора поляризации в каждой из них направлены в противоположные стороны (рис. 6). Если подать напряжение на электроды биморфа, как показано на рис. 6, то одна из пластин будет расширяться, а другая сжиматься, что приведет к изгибу всего элемента. В реальных конструкциях биморфных элементов создается разность потенциалов между внутренним общим и внешними электродами так, чтобы в одном элементе поле совпадало с направлением вектора поляризации, а в другом было направлено противоположно.

Изгиб биморфа под действием электрических полей положен в основу работы биморфных пьезосканеров. Объединяя три биморфных элемента в одной конструкции, можно реализовать трипод на биморфных элементах.

Если внешние электроды биморфного элемента разделить на четыре сектора, то можно организовать движение зонда по оси Z и в плоскости X, Y на одном биморфном элементе (рис. 7).

Действительно, подавая противофазные напряжения на противоположные пары секций внешних электродов, можно изгибать биморф так, сто зонд будет двигаться в плоскости X, Y (рис. 7 (а, б)). А изменяя потенциал внутреннего электрода относительно всех секций внешних электродов, можно прогибать биморф, перемещая зонд в направлении Z (рис. 7 (в, г)) [5].

3.2 Нелинейность пьезокерамики

Несмотря на ряд технологических преимуществ перед кристаллами, пьезокерамики обладают некоторыми недостатками, отрицательно влияющими на работу сканирующих элементов. Одним из таких недостатков является нелинейность пьезоэлектрических свойств. На рис. 8 в качестве примера приведена зависимость величины смещения пьезотрубки в направлении Z от величины приложенного поля. В общем случае (особенно при больших управляющих полях) пьезокерамики характеризуются нелинейной зависимостью деформаций от поля (или от управляющего напряжения).

Таким образом, деформация пьезокерамики является сложной функцией внешнего электрического поля:


u = u()

Для малых управляющих полей данная зависимость может быть представлена в следующем виде:

u = d* E+ α* E+…

где d и α - линейные и квадратичные модули пьезоэлектрического эффекта.

Типичные значения полей Е, при которых начинают сказываться нелинейные эффекты, составляют порядка 100 В/мм. Поэтому для корректной работы сканирующих элементов обычно используются управляющие поля в области линейности керамики (Е < Е) [5].

электронный микроскоп сканирующий зондовый

3.3 Крип пьезокерамики и гистерезис пьезокерамики

Другим недостатком пьезокерамики является так называемый крип (creep – ползучесть) – запаздывание реакции на изменение величины управляющего электрического поля.

Крип приводит к тому, что в СЗМ изображениях наблюдаются геометрические искажения, связанные с этим эффектом. Особенно сильно крип сказывается при выводе сканеров в заданную точку для проведения локальных измерений и на начальных этапах процесса сканирования. Для уменьшения влияния крипа керамики применяются временные задержки в указанных процессах, позволяющие частично скомпенсировать запаздывание сканера.

Еще одним недостатком пьезокерамик является неоднозначность зависимости удлинения от направления изменения электрического поля (гистерезис).

Это приводит к тому, что при одних и тех же управляющих напряжениях пьезокерамика оказывается в различных точках траектории в зависимости от направления движения. Для исключений искажений СЗМ изображений, обусловленных гистерезисом пьезокерамики, регистрацию информации при сканировании образцов производят только на одной из ветвей зависимости [5].


4. Устройства для прецизионных перемещений зонда и образца

4.1 Механические редукторы

Одной из важных технических проблем в сканирующей зондовой микроскопии является необходимость прецизионного перемещения зонда и образца с целью образования рабочего промежутка микроскопа и выбора исследуемого участка поверхности. Для решения этой проблемы применяются различные типы устройств, осуществляющих перемещение объектов с высокой точностью. Широкое распространение получили различные механические редукторы, в которых грубому перемещению исходного движителя соответствует тонкое перемещение смещаемого объекта. Способы редукции перемещений могут быть различными. Широко применяются рычажные устройства, в которых редукция величины перемещения осуществляется за счет разницы длины плеч рычагов. Схема рычажного редуктора приведена на рис. 9.

Механический рычаг позволяет получать редукцию перемещения с коэффициентом

ΔR =

Таким образом, чем больше отношение плеча L к плечу l, тем более точно можно контролировать процесс сближения зонда и образца.

Также в конструкциях микроскопов широко используются механические редукторы, в которых редукция перемещений достигается за счет разницы коэффициентов жесткости двух последовательно соединенных упругих элементов (рис. 10). Конструкция состоит из жесткого основания, пружины и упругой балки. Жесткости пружины k и упругой балки К подбирают таким образом, чтобы выполнялось условие: k < K [5].

К-во Просмотров: 497
Бесплатно скачать Курсовая работа: Сканирующая зондовая микроскопия