Курсовая работа: Снижение энергозатрат толстолистовых станов

где δРт и δР р - теоретическое и регистрируемое месдозами изменение силы прокатки; Сп и Ск - жесткость полосы и клети.

При контролируемой прокатке Сп =20...32 МН/мм, Ск = 8 МН/мм, а δРт /δР р =3,5.. .5. Так как по расчетам для условий стана 3000 величина δРт составляет 5.. .10 %, то регистрируемая величина δРт находится в пределах ошибки измерения. Суммарный крутящий момент при значении аv до 1.10 увеличился на 5...10 %. Однако при АП существенно перераспределяются крутящие моменты на валках (рис.2б). При коэффициенте асимметрии а v до 1.10 крутящий момент на ведущем валке в последних пропусках не превышал 2 МН*м, а суммарный крутящий момент 2,4 МН*м и 2 МН*м соответственно в предпоследнем и последнем пропусках. Среднеквадратичный ток привода ведущего валка, определяющий его нагрев за цикл при контролируемой прокатке, по симметричному режиму и при реализации АП в одном и двух пропусках составил соответственно 70..80%, 80..90% и 83..97% от допустимого. Таким образом, работу в режиме АП по условиям нагружения клети и привода можно применять в последних двух пропусках. При этом загрузка привода по силе прокатки, крутящему моменту и среднеквадратичному току находится в допустимых пределах. Во избежание неравномерности загрузки трансмиссий валков по крутящим моментам в последних двух пропусках ведущий и ведомый валки следует менять местами, что обеспечит постоянство эквивалентной нагрузки, ответственной за усталостную прочность деталей главной линии стана. Режимы АП могут быть использованы на других предприятиях при реконструкции листовых станов в процессе перевода клетей на индивидуальный привод валков. Исходя из экспериментальных данных можно сделать выводы об эффективности ассиметричной прокатке в связи с уменьшением силы прокатки до 10% , а следовательно и снижение расхода электроэнергии, получение более точных размеров и хорошее качество поверхности металла.

Энергосберегающие технологии индукционного нагрева

Структурные изменения в металлургической промышленности привели к широкому использованию технологий индукционного нагрева металлов. В частности, индукционный нагрев слябов перед прокаткой позволяет существенно повысить качество проката и выход годного металла

Наиболее экономически выгодный подход, снижающий стоимость нагрева тонны металла при существенном уменьшении окалинообразования и обезуглероживания, заключается в нагреве металла после выхода из газовой печи (900-1150 °С) до температуры прокатки (1150-1250 °С).

Проблему нагрева-подогрева слябов можно разделить на две части: нагрев из холодного состояния (или подогрев "толстых" слябов толщиной 200-300 мм) и подогрев на участке промежуточного рольганга между черновыми и чистовыми клетями прокатного стана стойких слябов (полосы подката) толщиной 20-50 мм. После разработки установок непрерывной разливки стали с толщиной сляба 20-50 мм исчезла стадия предварительной прокатки, однако необходимость подогрева слябов осталась. В обоих случаях индукционный нагрев может использоваться для формирования требуемого температурного поля сляба перед чистовой прокаткой.

В промышленности для нагрева слябов используются разнообразные типы индукционных печей. Наибольшее распространение получили овальные индукторы с продольным магнитным полем.

В настоящее время реализованы три типа установок для нагрева толстых стальных слябов перед прокаткой. Наиболее распространены следующие установки:

- нагреватели периодического действия с вертикальным размещением овальных индукторов, которые охватывают сляб, стоящий на узкой грани. Очевидно, реализация такой схемы размещения индукторов возможна только для относительно толстых слябов. Индикаторы, охватывающие сляб по широкой грани, получили название индукторов Росса — по имени главного специалиста компании Николаса Росса . Они были внедрены на производстве McLouth Steel в г. Трентоне (США)

- нагреватели непрерывного действия , состоящие из линии горизонтально расположенных овальных индукторов. Слябы непрерывно перемещаются по роликам, расположенным между индукторами. Типичная установка реализована в Лулэо, (Швеция);

- нагреватели непрерывного действия , состоящие из линии горизонтально расположенных овальных индукторов с возвратно-поступательным движением слябов. Наиболее известная установка, состоящая из 7 индукторов общей мощностью 42 МВт, реализована на производстве Geneva Steel в США.

Каждая из конструкций нагревателя обладает своими достоинствами и недостатками, и в каждом конкретном случае выбор зависит от многих факторов. Целесообразно провести сравнительный анализ этих трех типов ИНУ (индукционная нагревательная установка) по различным критериям.

КПД системы. При нагреве слябов одинаковой длины и на одной частоте КПД для этих трех типов нагревателей будет примерно одинаков.

Изменение длины нагреваемых слябов будет сказываться только на КПД индукторов Росса. При изменении ширины нагреваемых слябов в индукторах Росса могут возникнуть проблемы с равномерностью температурного поля из-за продольного краевого эффекта. В установках с возвратно-поступательном движением слябов, при уменьшении ширины сляба более чем в два раза от максимальной, предусмотрен одновременный нагрев двух слябов. Например, для поддержания высокого КПД и производительности при нагреве слябов различной длины и ширины в ИНУ, установленной в Geneva Steel, имеется возможность нагревать либо 2 сляба, расположенных рядом друг с другом, либо 4 сляба, расположенных двумя парами.

Удобство транспортировки. При использовании индукторов Росса транспортировка представляет ряд трудностей, связанных с вертикальным расположением слябов и их устойчивостью на узкой грани. Также для индукторов Росса отсутствие футеровки во время транспортировки ведет к увеличению тепловых потерь с поверхности загрузки.

Удаление окалины. При нагреве образуется окалина, которая, осыпаясь, попадает на элементы конструкции индуктора, и, тем самым, является одной из причин выхода ИНУ из строя. Наиболее приспособлены к удалению окалины индукторы Росса.

Потребность в буферной зоне на выходе индуктора. ИНУ на основе периодических индукторов Росса и ИНУ с возвратно-поступательным движением сляба не нуждаются в буферных зонах на выходе установки. И, как преимущество, можно отметить, что в случае кратковременной остановки прокатного оборудования они могут использоваться в режиме термостатирования. Однако для ИНУ непрерывного действия возникают проблемы неравномерного распределения температуры в продольном сечении при нагреве длинных слябов. Начало сляба, покинув последний индуктор, подвергается остыванию, в то время как конец сляба все еще остается в ИНУ и продолжает нагреваться. Для решения этой проблемы можно менять мощность на последнем индукторе, перегревая начало сляба или используя на выходе ИНУ термостатирующую буферную зону. В качестве буферной зоны можно применять простейшую газовую печь, работающую в режиме компенсации тепловых потерь с поверхности загрузки, или же использовать тепловые экраны.

Конечное температурное поле. Для нагрева стальных слябов одинаковой толщины и ширины равномерность конечного температурного поля будет при правильном выборе частоты приблизительно одинакова.

Занимаемая площадь. Одно из преимуществ ИНУ в сравнении с газовыми печами — небольшая рабочая площадь. При сравнении различных типов ИНУ самые лучшие показатели у установки с возвратно-поступательным движением. Ее длина определяется максимальной длиной нагреваемых слябов. ИНУ, использующая периодические индукторы Росса, также занимает небольшую площадь (слябы размещаются вертикально), но для обеспечения необходимой производительности приходится использовать параллельно несколько линий (на McLouth Steel— 6 линий по 3 индуктора). Наихудшие показатели у непрерывного индуктора, его длина определяется из условия достижения нужного температурного поля и, как правило, намного больше, чем у ИНУ с возвратно-поступательным движением загрузки. Исходя из этого, можно сделать вывод, что он менее всего подходит для нагрева стальных слябов от начальной температуры окружающей среды.

Из вышесказанного следует, что установка с возвратно-поступательным движением загрузки более универсальна и может использоваться как для нагрева, так и для подогрева слябов различной длины и ширины, и эта концепция была использована при разработке и внедрении индукционной установки мощностью 42 МВт для Geneva Steel (Utah, USA).

Комбинированная работа индукционной нагревательной установки совместно с газовой печью.

Доведение температурного поля сляба до необходимых кондиций непосредственно перед прокаткой можно осуществлять в индукционных нагревателях благодаря ряду преимуществ, таких как хорошие энергетические показатели, высокая скорость нагрева, небольшие габариты установок и т.д.

Но исследования ERPI Center for Materials Production (Pittsburg, USA) показывают, что, несмотря на хороший КПД и равномерный нагрев, применение только индукционного нагрева часто оказывается слишком дорогим, особенно, в случае с тонкими слябами. Рекомендуется применять систему, которая бы использовала газовую печь для основного нагрева и применяла бы индукционную технику для тонкого регулирования температуры только перед самой прокаткой.

Следует отметить, что экономические оценки для выбора метода подогрева должны учитывать специфику страны и местоположение завода, так как эти факторы будут оказывать влияние на стоимость электроэнергии и газа. Исходя из экономической выгоды, возможен выбор либо газового, либо индукционного оборудования, либо их комбинации.

Установки индукционного нагрева потребляют на 73-80 % меньше конечной энергии, чем газовые установки. Следующим преимуществом индукционных установок являются широкие возможности регулирования нагрева, что приводит к повышению качества продукта и увеличению срока службы прокатного стана. Выбор же некоторых предприятий в пользу газовых установок для подогрева кромок вызван относительно высокой стоимостью индукционного оборудования и нередко очень высокой ценой на электроэнергию.

В прокатном производстве, где необходимо нагревать слябы от комнатной температуры до температуры прокатки, индукционные установки составляют лишь незначительную долю нагревательного оборудования. В принципе, и здесь можно сократить потребление конечной энергии и окалинообразования путем использования индукционного нагрева, но эти преимущества незначительны в связи с тем, что техника пламенных печей высокоразвита, и поперечные сечения нагреваемого материала велики, и, следовательно, преимущества ИНУ не так значительны, так как выравнивание температуры по сечению заготовки происходит, в основном, за счет теплопроводности материала (так же, как и для газовой печи). Даже длительное время разогрева газовых печей не сильно сказывается на потреблении конечной энергии. Поэтому чисто индукционный способ нагрева слябов от комнатной температуры рекомендуется в том случае, если качество продукта определенно является приоритетной задачей, или если доступен источник дешевой электроэнергии.

Определение метода нагрева по экономическим показателям (полученным из расходов на капитальные вложения, конечную энергию, применяемый материал, техническое обслуживание и т.д.) часто приводит предприятие к выбору пламенных методов нагрева. При этом даже присущий этим методам низкий КПД процесса не может ничего изменить, поскольку затраты на ископаемые горючие материалы сегодня значительно ниже, чем на электроэнергию.

В связи со сказанным хочется отметить, что гибридная система, состоящая из газовой и индукционных печей, включает в себя ряд положительных моментов, присущих каждой из них в отдельности. Она требует меньше места, чем только газовая система, и предоставляет большую гибкость. Удобно использовать газовую печь как буфер слябов в случае кратковременной поломки прокатного оборудования, и применение ИНУ дает возможность понизить температуру газовой печи, тем самым будет снижено количество образующейся окалины.

Низкотемпературная и "сухая" прокатка

К-во Просмотров: 217
Бесплатно скачать Курсовая работа: Снижение энергозатрат толстолистовых станов