Курсовая работа: Снижение энергозатрат толстолистовых станов

Сущность НТП заключается в значительном, на 100..400°С, уменьшении температуры начала прокатки. НТП относительно давно и успешно применяется на тонколистовых широкополосных станах, а также на проволочных и сортовых станах. Проведенные исследования показали, что благодаря снижению температуры начала прокатки достигнута экономия энергии 120 Мдж/т на среднесортном стане и 195 Мдж/т - на мелкосортном. В Швеции на заводе фирмы Fagerstad AB Osterbyverken при прокатке мелкого сорта квадратного сечения 10,5х10,5 мм из заготовок диаметром 70 мм углеродной стали показана возможность снижения температуры начала прокатки с 1150 до 750°С, то есть на 400°С . Установлено также, что для прокатки заготовок пружинной, подшипниковой, инструментальной и нержавеющей сталей допустимо снижать температуру начала прокатки до 800-950°С. Снижение затраты энергии составило от 306 до 468 Мдж/т. При прокатке среднеуглеродистых сталей ~80% энергии тратится на нагрев металла до 1150°С. При снижении этой температуры до 750°С качество продукции остается соответствующим стандартам Швеции, а затрата энергии, невзирая на увеличение нагрузки двигателей стана, уменьшается. При снижении температуры прокатки нержавеющих сталейдо 800-950°С затраты энергии уменьшаются на 13-20%.

Однако до настоящего времени не известны факты внедрения или хотя бы исследования возможности ведения НТП на ТЛС. Причина - в особенностях скоростного режима прокатки на реверсивных станах, к которым относятся все ТЛС. В отличие от непрерывных станов, где скорость прокатки доходит до 25 м/с и более, время охлаждения при транспортировке раскатов от клети к клети небольшое, на ТЛС, при максимальной скорости 6 м/с, длительность пауз между проходами, особенно в чистовой клети, значительно больше. Увеличение скорости прокатки невозможно. Поэтому при существенном снижении температуры нагрева металла температура конца прокатки становится настолько малой, что процесс деформации становится невозможным.

Но в принципе можно так изменить тепловой балансу прокатки на ТЛС, что металл не будет охлаждаться до недопустимой температуры.

Очевидно, что для прокатки металла с существенно уменьшенной температурой необходимо уменьшать обжатия, следовательно, увеличивать количество проходов. Это приведет к большему приходу тепла от работы пластической деформации. При этом, конечно, будет увеличиваться и время охлаждения, следовательно, потери тепла металлом. Результат будет зависеть от того, который из этих процессов будет преобладать. Поскольку процесс прокатки зависит от очень многих факторов, то характер изменения составных теплового баланса можно установить только математическим моделированиям.

Установлено, что потери тепла излучением при НТП уменьшаются до 70%, и это следствие того, что потери, соответственно закону Стефана-Больцмана, зависят от 4й степени абсолютной температуры. Потери тепла теплопроводностью валкам линейно зависят от перепада температур и по этому уменьшаются при снижении температуры метала в меньшей степени. Приход энергии от диссипации энергии пластической деформации, если прокатка ведется в одинаковых энергосиловых условиях, зависит только от числа проходов. Уменьшение температуры раската влечет уменьшение обжатий, а в следствии увеличение числа проходов. Обычно в черновой клети ТЛС совершается 5-7 проходов, а в чистовой 9-11. Увеличение числа проходов до 9-15 целиком допустимо. Т.о. приход тепла только за счет тепла деформации может увеличится в 1.5 раза.

„Сухая" прокатка заключается в исключении попадания воды из систем охлаждения валков на прокат благодаря установлению замкнутых систем охлаждения. Ее эффективность в первую очередь зависит от тщательности изоляции раскатов от охлаждающей жидкости, потому как вода забирает наибольшее количество тепла при контакте с поверхностью. Поэтому при разработке замкнутых систем охлаждения важнейшим моментом является создание надежных уплотнений между валками и неподвижными деталями системы. Эта проблема решена в патенте 35811 Україна, А, B21B27/10.

Моделирование процессов НТП и „сухой" прокатки было выполнено с помощью разработанной на кафедре ОМД и М ДонГТУ программы, в основу которой положена математическая модель теплового баланса раскатов листовых станов.

Моделировался процесс прокатки на трех ТЛС - 2250 ОАО АМК с минимальными енергосиловими возможностями, 3600 „Азовсталь" с максимальными и на типичном отечественном стане 2800 ОАО АМК (до реконструкции), энергосиловые возможности которого можно считать средними. На рис. 1 показано изменение температуры при прокатке листа 16х1700х6000 из сляба 280х1250х1690 на стане 2800 при обычной технологии с температурой начала прокатки tнп =1180о С и при низкотемпературной при tнп =850о С


Рисунок 1 – Изменение температур по проходам. 1 – обычная технология; 2 – НТП;

На рис.2 показано изменение температуры при прокатке листа 8х1700х6000мм из сляба 180х1050х1540мм на стане 2800 при НТП (1) с температурой начала прокатки tнп =1140о С и НТП совместно с "сухой" прокаткой (2) при tнп =850о С

Рисунок 2 – Изменение температур по проходам в чистовой клети при комбинированной технологии. 1 – НТП; 2 – НТП и "сухая" прокатка;

В результате исследования пришли к таким выводам:

1. При увеличении числа проходов и прокатке с усилием и моментами, которые не превышают допустимых, ведение НТП на ТЛС полностью возможно, поскольку температура конца прокатки t кп не будет ниже допустимой.

2. Допустимая минимальная температура начала прокатки t нп в первую очередь зависит от допустимой температуры конца прокатки t кп . При уменьшении с 860°С до 770°С при прочих равных условиях t нп уменьшается с 1080°С до 900°С, то есть в два раза больше, чем уменьшилась t кп . Поэтому НТП следует вести из как можно меньшей t кп. Ограничением здесь есть попадание в зону перекристаллизации, где повышается вероятность хрупкого разрушения при деформации.

3. Увеличение ширины листов приводит к уменьшению t нп : при изменении ширины с 1700мм до 2599ммt нп снизилась до 1025°С, то есть на 125°С. Это обусловлено ростом усилий и моментов прокатки при увеличении ширины штабы. Увеличение усилий и моментов приводит к увеличению числа проходов, следовательно, к росту длительности охлаждения, поскольку удельный приход тепла от диссипации энергии пластической деформации остается на прежнем уровне.

4. НТП тонких листов связана со значительными трудностями связанных с быстрым охлаждением тонкой полосы в чистовой клети. Для обеспечения минимально допустимой t кп в этом случае придется поднимать t нп до1140°С, то есть это уже фактически не НТП. Если t нп снизить до 900°С, то за 17 проходов в черновой клети стана 2800 и 10 - в чистовой лист 8x1700x6000 мм из стали 65Г будет иметь 639°С, что не реально.

5. Эффективность НТП, особенно при прокатке тонких листов, можно повысить за счет "сухой" прокатки в чистовой клети. В этом случае t нп снижается существенно - до 850°С, то есть на 350-400°С по сравнению с обычной, высокотемпературной прокаткой.

6. При значительном снижении t нп в черновой клети прокатка толстых раскатов является практически изотермической, поскольку выделение тепла при пластической деформации полностью компенсирует его потери при охлаждении. При определенных условиях температура металла в черновой клети даже повышается по сравнению с начальной на ~50°С. А поскольку в чистовой она падает к t нп , то такую прокатку целесообразно называть квазиизотермической.

7. НТП самых тонких (5 мм) и широких (3200 мм)листов невозможна, поскольку минимальная t нп , что обеспечивает допустимую t кп , составляет 1200°С. Для снижения t нп следует применять одновременно НТП и "сухую" прокатку в чистовой клети. В этом варианте t нп можно снизить до 950°С.

8. Применение НТП на ТЛС с незначительными енергосиловими возможностями (типа стана 2250) малоэффективное, поскольку придется увеличивать число проходов (с соответствующим падением производительности стана) к явно неприемлемому уровню - в черновой клети до 21, а в чистовой - до 17. При умеренном числе проходов снижения температуры начала прокатки незначительное – близко 50°С.

9. НТП на более могучем ТЛС 3600 обещает быть существенно эффективн?

К-во Просмотров: 218
Бесплатно скачать Курсовая работа: Снижение энергозатрат толстолистовых станов