Курсовая работа: Современная криптография

Исходный текст шифруется открытым ключом адресата и передается ему. Зашифрованный текст в принципе не может быть расшифрован тем же открытым


??????. ???????????? ????????? ???????? ?????? ? ?????????????? ????????? ?????, ??????? ???????? ?????? ?????? ????????.

Криптографические системы с открытым ключом используют так называемые необратимые или односторонние функции, которые обладают следующим свойством: при заданном значении x относительно просто вычислить значение f(x), однако если y=f(x), то нет простого пути для вычисления значения x.

Множество классов необратимых функций и порождает все разнообразие систем с открытым ключом. Однако не всякая необратимая функция годится для использования в реальных ИС.

В самом определении необратимости присутствует неопределенность. Под необратимостью понимается не теоретическая необратимость, а практическая невозможность вычислить обратное значение используя современные вычислительные средства за обозримый интервал времени. Поэтому чтобы гарантировать надежную защиту информации, к системам с открытым ключом (СОК) предъявляются два важных и очевидных требования:

1. Преобразование исходного текста должно быть необратимым и исключать его восстановление на основе открытого ключа.

2. Определение закрытого ключа на основе открытого также должно быть невозможным на современном технологическом уровне. При этом желательна точная нижняя оценка сложности (количества операций) раскрытия шифра.

Алгоритмы шифрования с открытым ключом получили широкое распространение в современных информационных системах. Так, алгоритм RSA стал мировым стандартом де-факто для открытых систем и рекомендован МККТТ.

Вообще же все предлагаемые сегодня криптосистемы с открытым ключом опираются на один из следующих типов необратимых преобразований:

Разложение больших чисел на простые множители.

Вычисление логарифма в конечном поле.

Вычисление корней алгебраических уравнений.

Алгоритм Диффи-Хеллмана .

Диффи и Хелман предложили для создания криптографических систем с открытым ключом функцию дискретного возведения в степень.

Необратимость преобразования в этом случае обеспечивается тем, что достаточно легко вычислить показательную функцию в конечном поле Галуа состоящим из p элементов. (p - либо простое число, либо простое в любой степени). Вычисление же логарифмов в таких полях - значительно более трудоемкая операция.

Если y=ax,, 1 < x < p-1, где - фиксированный элемент поля GF(p), то x=loga y над GF(p). Имея x, легко вычислить y. Для этого потребуется 2 ln(x+y) операций умножения.

Обратная задача вычисления x из y будет достаточно сложной. Если p выбрано достаточно правильно, то извлечение логарифма потребует вычислений, пропорциональных

L(p) = exp { (ln p ln ln p)0.5 }

Для обмена информацией первый пользователь выбирает случайное число x1, равновероятное из целых 1,...,p-1. Это число он держит в секрете, а другому пользователю посылает число

y1 = ax1 mod p

Аналогично поступает и второй пользователь, генерируя x2 и вычислив y2, отправляя его первому пользователю.

В результате этого они могут вычислять k12 = ax1x2 mod p.

Для того, чтобы вычислить k12, первый пользователь возводит y2 в степень x1. То же делает и второй пользователь. Таким образом, у обоих пользователей оказывается общий ключ k12, который можно использовать для шифрования информации обычными алгоритмами. В отличие от алгоритма RSA, данный алгоритм не позволяет шифровать собственно информацию.

Не зная x1 и x2, злоумышленник может попытаться вычислить k12, зная только перехваченные y1 и y2. Эквивалентность этой проблемы проблеме вычисления дискретного логарифма есть главный и открытый вопрос в системах с открытым ключом. Простого решения до настоящего времени не найдено. Так, если для прямого преобразования 1000-битных простых чисел требуется 2000 операций, то для обратного преобразования (вычисления логарифма в поле Галуа) - потребуется около 1030 операций.

Как видно, при всей простоте алгоритма Диффи-Хелмана, его недостатком является отсутствие гарантированной нижней оценки трудоемкости раскрытия ключа.

Кроме того, хотя описанный алгоритм позволяет обойти проблему скрытой передачи ключа, необходимость аутентификации остается. Без дополнительных средств, один из пользователей не может быть уверен, что он обменялся ключами именно с тем пользователем, который ему нужен. Опасность имитации в этом случае остается.

В качестве обобщения сказанного о распределении ключей следует сказать следующее. Задача управления ключами сводится к поиску такого протокола распределения ключей, который обеспечивал бы:

возможность отказа от центра распределения ключей;

взаимное подтверждение подлинности участников сеанса;

подтверждение достоверности сеанса механизмом запроса-ответа,

использование для этого программных или аппаратных средств;

К-во Просмотров: 856
Бесплатно скачать Курсовая работа: Современная криптография