Курсовая работа: Современная криптография

Иерархические схемы распределения ключей.

Рассмотрим следующую задачу.

Пусть абоненты сети связи не равноправны между собой, а разделены на "классы безопасности" C1,C2,…,Cn. На множестве этих классов определен некоторый частичный порядок; если Cj < Ci, то говорят, что Ci доминирует Cj , т.е. имеет более высокий уровень безопасности, чем Cj . Задача состоит в том, чтобы выработать секретные ключи kiдля каждого класса Ci таким образом, чтобы абонент из Ci мог вычислить kj в том и только в том, когда Ci³Cj.

Эта задача была решена в общем виде Эклом и Тейлором в связи с проблемой контроля доступа. В их методе каждый класс безопасности получает, кроме секретного, также и открытый ключ, который вместе с секретным ключом класса, доминирует данный, позволяет последнему вычислить секретный ключ данного класса.

Для случая, когда частичный порядок является деревом, имеется схема Сандху [San], которая позволяет добавлять новые классы безопасности без изменения ключей существующих классов.

Приведем описание иерархической схемы распределения ключей, предложенной Ву и Чангом для случая, когда частичный порядок является деревом.


????? p ? ??????? ??????? ?????, V = Zp´Zp´Zp ? ????????? ???? ?????????? ???????? ??? Zp . ???? iÎZp , X = (x1,x2,x3), Y = (y1,y2,y3) ÎV, ?? ????????? ????????? ??????? ?? V:

Предположим, что каждому классу безопасности сопоставлен идентификатор

iÎZp \ {0}; класс с идентификатором i мы будем обозначать через Ci . Ввиду того, что частичный порядок на множестве классов безопасности является деревом, для описания протокола достаточно описать процедуры выработки секретного ключа для корневого класса безопасности (т.е. класса с наиболее высоким уровнем безопасности) и для произвольного класса Cj при условии, что секретный ключ для класса Ci , непосредственно доминирующего Cj (т.е. такого, что Cj < Ci и не существует класса Cr такого, что Cj < Cr < Ci), уже выработан.

Для корневого класса безопасности (например C1) выбирается произвольный секретный ключ KiÎV \ {(0,0,0)}.

Пусть класс Ci доминирует класс Cj и для Ci уже выработан секретный ключ KiÎV. Тогда в качестве секретного ключа для Cj выбирается вектор


где Pj – вектор из V, выбранный случайно так, чтобы было определено.

После чего вектор Pj делается общедоступным.

Таким образом, в процессе выполнения протокола для каждого класса безопасности Ci вырабатывается секретный ключ Ki и открытый ключ Pj (кроме корневого класса). Если теперь Cj < Ci, то абонент из Ci может вычислить Kj следующим образом.

Существует цепь классов безопасности Ci = Cro>Cr1>…>Crn = Cj, где Cl-1 непосредственно доминирует Cl для всех L = 1,…,n. Абонент Ci, зная Ki и Pr1, вычисляет по формуле (**), затем, зная Kr1 и Pr2, вычисляет Kr2 по той же формуле и т.д.; после n шагов будет вычислен Krn = Kj.

Электронная подпись

В чем состоит проблема аутентификации данных?

В конце обычного письма или документа исполнитель или ответственное лицо обычно ставит свою подпись. Подобное действие обычно преследует две цели.

Во-первых, получатель имеет возможность убедиться в истинности письма,

сличив подпись с имеющимся у него образцом. Во-вторых, личная подпись является юридическим гарантом авторства документа. Последний аспект особенно важен при заключении разного рода торговых сделок, составлении доверенностей, обязтельств и т.д.

Если подделать подпись человека на бумаге весьма непросто, а установить авторство подписи современными криминалистическими методами - техническая деталь, то с подписью электронной дело обстоит иначе. Подделать цепочку битов, просто ее скопировав, или незаметно внести нелегальные исправления в документ сможет любой пользователь.

С широким распространением в современном мире электронных форм документов (в том числе и конфиденциальных) и средств их обработки особо актуальной стала проблема установления подлинности и авторства безбумажной документации.

Итак, пусть имеются два пользователя Александр и Борис.

От каких нарушений и действий злоумышленника должна защищать система аутентификации.

Отказ (ренегатство).

Александр заявляет, что он не посылал сообщение Борису, хотя на самом деле он все-таки посылал.

Для исключения этого нарушения используется электронная (или цифровая) подпись.

Модификация (переделка).

Борис изменяет сообщение и утверждает, что данное (измененное) сообщение послал ему Александр.

Подделка.

Борис формирует сообщение и утверждает, что данное (измененное) сообщение послал ему Александр.

К-во Просмотров: 852
Бесплатно скачать Курсовая работа: Современная криптография