Курсовая работа: Специфика проведения измерений и обработки результатов
8
9
10
11
485
484
483
483
485
Заново определяем значения критерия для каждого значения результата серии измерений по формуле:
В соответствии с доверительной вероятностью с учетом находим из соответствующей таблицы значение , которое зависит от числа измерений и .
Условие выполняется для всех результатов серии измерений.
Следующим шагом анализа является проверка гипотезы о нормальности распределения оставшихся результатов серии измерений. Проверка выполняется по составному критерию, так как количество результатов серии измерений лежит в диапазоне 10…15<n<40…50.
Применяя первый критерий, следует вычислить отношение:
и сравнить с и .
Задаемся рекомендуемой доверительной вероятностью и для уровня значимости определяем из соответствующей таблицы квантили распределения и .
Значение соответствует условию . Первый критерий выполняется.
Применяя второй критерий, задаемся рекомендуемой доверительной вероятностью и для уровня значимости с учетом по соответствующим таблицам определяем значения и .
Для из таблицы для интегральной функции нормированного нормального распределения определяем значение и рассчитываем E:
, .
Используя правила округления, получим: