Курсовая работа: Способы очистки газообразных выделений при электролизе алюминия

Значение воды для увеличения сорбционной емкости можно продемонстрировать при изменении, которое имеет место когда сухой газ замещается газом, содержащим фтористый водород и влагу. Для газов с содержанием от 10 до 100 мг HF/нм3 сорбционная емкость глинозема может быть фактически увеличена вдвое, если содержание влаги в газе увеличивается от нуля до 3.8 % объемн. Последнее указанное содержание воды представляет верхний предел, практически присутствующий в окружающем воздухе. Естественно, эта величина зависит от погодных условий, времени года и географического положения.

Поскольку поддержание минимальной влажности окружающего воздуха является важным конструктивным параметром, это требование может быть удовлетворено обеспечением того, чтобы подаваемый глинозем имел адекватное содержание влаги, и этим пользуются некоторые производители.

В реальных заводских условиях глинозем не достигает насыщения по адсорбированному фтористому водороду. Для сухих скрубберов практический верхний конструкционный предел составляет 0.02-0.03 % масс. фтора на м2 /г, но ключевыми факторами являются резервная емкость и качество контакта газ/твердое, которые должны всегда учитываться на стадии разработки. Широкие пределы диктуются рядом факторов, таких как качество контакта газ/твердое, требуемая концентрация на выходе и присутствующая влага. К примеру, легче сорбируются до большого насыщения выбросы из электролизеров Содерберга, когда из сухого скруббера выходит газ с содержанием фтора 10-20 мг/нм3 в сравнении с допустимым содержанием F 0.5-2 мг/нм3 для электролизеров с обожженными анодами.

Двуокись серы также поглощается в сухих скрубберах глиноземом, но когда глинозем нагревается или загружается в электролизер SO2 выделяется снова. Влага не влияет на поглощение диоксида серы глиноземом, поскольку его масса насыщения значительно меньше, чем у фтористого водорода. Для конкретного глинозема с величиной удельной поверхности 41 м2 /г поглощается примерно 0.5 % масс. SO2 при поддержании материала в равновесии с газом, содержащим 500 ррм диоксида серы, тогда как тот же самый глинозем будет хемосорбировать 4 % масс. HF при поддержании материала в равновесии с газом, содержащим 500 ррм фтористого водорода. Если в газе присутствует HF, он будет замещать адсорбированный SO2 .На действующих скрубберах низкая равновесная величина адсорбции SO2 металлургическими глиноземами в присутствии HF является лимитирующим фактором при улавливании двуокиси серы из отходящих газов сухими скрубберами. Однако присутствие SO2 не влияет на эффективность улавливания газообразного фтористого водорода. Последняя больше определяется величиной удельной поверхности глинозема, присутствующей влагой, типом глинозема и конструкцией скруббера.

1.2.2 Улавливание твердых частиц сухими скрубберами

Серьезным недостатком системы мокрой газоочистки является сложность улавливания субмикронного твердого материала. Основной принцип работы системы сухой газоочистки позволяет обойти эту проблему и облегчает следование более жестким стандартам по фторидным выбросам. Как мы обсудим детально, конструкция сухих скрубберов предусматривает прохождение газа через слой глинозема, и далее, рукавные фильтры. Это приводит к взаимодействию и связыванию материалов между собой, удаляя таким образом весь твердый материал при гораздо более низком падении давления, чем требуется для мокрых скрубберах при сравнимой эффективности работы.

1.2.3 Улавливание примесей при сухой газоочистке

В процессе электролиза примеси непрерывно приходят в ванну следующими путями:

· при загрузке свежего глинозема

· из анодов

· с химическими компонентами

· вымываясь из конструкции электролизера

· при движении воздуха через электролизер.

Состав и доля этих примесей варьируется в зависимости от источника и технологии процесса. Поэтому проблема, которую они вызывают будет специфичной для каждого производителя.С приходом в электролизер примеси могут достичь такого содержания в электролите, когда скорость их потерь станет равной скорости добавки. Примеси уходят из системы несколькими путями, включая:

· совместный разряд с алюминием

· вынос из электролизера с газами

· впитывание в катодную футеровку.

Поэтому при установке системы сухой газоочистки некоторые примеси могут быть возвращены в ванны с глиноземом, обогащенным по фтору. И лишь небольшое их количество удаляется с отходящими газами через трубу вследствие высокой эффективности улавливания (до 98-99%) по всем фракциям твердого материала. Это влияет на качество вторичного глинозема. Далее материал подается в электролизер, как показано в таблице 4 для конкретного глинозема и производителя. Диффузия примесей в угольный катод или футеровку считается незначительной. Следовательно, основная их доля выходит из электролизера с алюминием, или с не уловленными выбросами. Степень загрязнения металла поэтому является в большей мере функцией эффективности газосбора укрытий, предполагая, что приход примесей есть постоянная величина.

Поскольку присутствуют только следы примесей, существовало лишь ограниченное количество представлений о тенденции их поглощения глиноземом. Однако общим направлением является то, что чем более летуча примесь, тем большее ее количество возвращается в электролизер. Поэтому предполагается повышение ее концентрации как в электролите, так и в металле по сравнению с заводами, работающими без сухой газоочистки. Следует учесть и другие аспекты, такие как относительная электрохимическая благородность различных примесей и их растворимость в металле и электролите.

При возврате примесей производимый металлический алюминий всегда соответствует заданным стандартам. Однако сообщалось, что отдельные его сорта, такие как металл чистотой 99.9% для электрических проводников становится труднее производить на заводах, использующих сухую газоочистку. Поэтому ожидается, что большее внимание в не столь отдаленном будущем будет приковано к ситуации вокруг поставки металла высокой чистоты, когда в алюминиевой промышленности станут доминировать сухая газоочистка и электролизеры с эффективность укрытия 95-99%.

Выход по току и по энергии также подвержены влиянию со стороны некоторых потенциальных примесей. К примеру сообщалось, что выход по току значительно снижается, когда концентрация фосфора в электролите превышает 80 ррм. Производители, использующие сухую газоочистку часто подходят к этому пределу, и поэтому предпринимаются шаги для разработки техники обхода данной проблемы. Для решения ее сегодня изучаются два различных подхода - либо удаление примесей непосредственно из газа электролизера, либо обработка загрязненного глинозема из сухого скруббера до загрузки его в электролизер.

Первый метод включает поэтапный сбор частиц. Цель его - уловить обогащенные по примесям твердые частицы с небольшим содержанием глинозема. Собранная пыль далее реагирует с паром в автоклаве для восстановления содержания фтора, а осадок выводится в отвал. Для предварительной очистки газа установлены мощные электрофильтры, обеспечивающие соответствие требуемым расчетам технического и экономического обоснования.

Методы очистки газа после скрубберов включают отделение пыли от глинозема перед его загрузкой в электролизер. В узком масштабе были испытаны такие способы мокрой очистки, как флотация, ультразвуковая обработка промывка в кислотах и щелочах. В таком же масштабе были испытаны и сухие способы очистки - магнитная, воздушная сепарации и сепарация на центрифуге. Поскольку эти примеси проявляют тенденцию концентрироваться в мелкой фракции материала, эти физические способы разделения имеют большой потенциал для очистки алюминия при минимальных затратах.

1.2.4 Качество глинозема для сухой газоочистки

Исходя из вышесказанного, наиболее полный контроль над фтористыми выбросами может быть достигнут в том случае, когда глинозем имеет высокую удельную поверхность ВЕТ. Желательным также является присутствие влаги в адсорбенте. Структурные требования к глинозему при улавливании мелких твердых частиц, или двуокиси серы кажутся однако малоуместными. В последнем случае превалирующая адсорбция HF препятствует поглощению SO2 без большого избытка используемого глинозема.

Оценка минимальной величины удельной поверхности может быть сделана только на основании знания уровня газообразных выбросов, а также конструкционных характеристик и дизайна сухого скруббера. Однако в качестве генерального правила принимается минимальная удельная поверхность 25 м2 /г, поскольку равновесное насыщение не достигается. Если пользоваться этой минимальной величиной, то весь подаваемый для питания глинозем будет необходимо пропускать через эффективно сконструированный сухой скруббер.

В прошлом состоялась широкая дискуссия на тему прочих структурных требований к используемому в системе сухой газоочистки глинозему, таких как содержание альфа- и гамма-фаз, а также потерь при прокаливании, однако новые результаты показали, что кристаллическая структура влияет на процесс слабо. Поэтому роль, которую играет влага в обеих интерпретациях может иногда быть обманчива.

Поддержание необходимой пропорции влаги для адсорбции согласно механизма, представленного в параграфе в определенных климатических условиях может быть затруднительным, если производители должны полагаться на атмосферную влажность. Поэтому более равномерная адсорбция будет проходить в том случае, если глинозем имеет собственную влагу, и это объясняет факт, почему некоторые производители предпочитают высокое содержание потерь при прокаливании. Кальцинация глинозема идет по сложному механизму, но всегда существует корреляция между кристаллической структурой, удельной поверхностью и содержанием влаги. Фактически, наиболее предпочтительными являются глиноземы, имеющие высокий уровень потерь при прокаливании и большую удельную поверхность ВЕТ.

1.2.5 Системы сухой газоочистки

Фтористый водород непосредственно хемосорбируется на кристаллический глинозем из сухого горячего газа. Свежий (первичный) глинозем подается непосредственно в поток газа, который смешивается и реагирует с ним. Затем прореагировавший глинозем, а также частицы твердых фторидов и другие твердые материалы удаляются из газового потока при пропускании через рукавные фильтры. Собранный (вторичный) глинозем, содержащий почти все фториды и твердые частицы, выброшенные в процессе электролиза подается затем в электролизер. Поэтому весь процесс улавливания выбросов работает как замкнутый цикл. Не только газообразные и твердые фториды, но также и весь мелкий материал (главным образом глиноземная пыль) улавливаются не менее чем на 98% и возвращаются непосредственно в процесс электролиза.

Для хорошего контакта газ/глинозем и эффективной фильтрации необходима соответствующая конструкция системы газосбора. Энергопотребление следует снизить, а сама система должна быть оснащена оборудованием для контроля, подачи глинозема и его транспортировки.

Надежность в эксплуатации является жизненно важной, поскольку стандарты фторидных выбросов очень жесткие, и выделение неочищенного газа вследствие неполадок системы недопустимо.

Сухие системы газоочистки разрабатываются с достаточной гибкостью, позволяющей работать при значительном снижении производительности вследствие аварий любой составляющей системы. Повседневное обслуживание не позволяет превышать производительность сухой системы. В системе также необходимо наличие промежуточных емкостей, поскольку резервное оборудование требуется при таких операциях, как подача глинозема. И поэтому 100% - я надежность воспринимается как большая награда.


К-во Просмотров: 248
Бесплатно скачать Курсовая работа: Способы очистки газообразных выделений при электролизе алюминия