Курсовая работа: Способы получения ферментов
Проблеме коагуляции и флокуляции микробных клеток посвящено весьма мало исследований, за исключением работ, направленных на решение частных задач в пивоварении. Nakamura со ставил перечень основных требований, которые должны предъявлятьсяк реагентам, предназначенным для применения в качестве коагулянтов или флокулянтов микробных клеток. К ним относятся: низкая стоимость, низкая доза применения и отсутствие резкого влияния на изменение рН. Среди неорганических веществ в качестве потенциальных коагулянтов было испытано множество агентов, включая квасцы, соли железа и кальция. Хлорид кальция (0,1—0,5 %) применялся с гидроокисью натрия (0,2—0,8 %) для того, чтобы обеспечить поддержание рН смеси на уровне 8,0—9,5. Эффективным агентом при этом оказалась гидроокись кальция, вызывающая коагуляцию и копреципитацию (совместное осаждение). Кальций может быть удален из концентрированной клеточной массы путем добавления разбавленной кислоты. Особенно эффективными оказались титановые соли в концентрации около 0,01 % для дрожжей, бактерийи микроводорослей. Это связано с четырехвалентным зарядом иона титана.
Была изучена флокуляция различных бактерийкатионным полиамином и положительно заряженными микроскопическими волокнами алюминия. Количество алюминия, потребного для флокуляции Е. coli, составляло около одной десятой от того, что требовалось в случае Lactabacillusdeilbruckii. Эффективность флокуляции зависела от температуры, физиологического «возраста» культуры, характера суспендирующей средыи особенно от фактических усилий сдвига, воздействовавших; на клетки перед флокуляцией.
2.2 Остатки клеток и белки
Получающиеся после разрушения микробных клеток (для выделения внутриклеточных ферментов) остатки клеточной оболочки обычно подлежат удалению из смеси до того, как она будет подвергнута фракционированию с целью получения различных белковых компонентов. Остатки клеток при механическом разрушении последних колеблются в размерах от нескольких микрон до долей микрона и поэтому трудно подвергаются извлечению из смеси. На помощь в этом случае приходят флокуляция и коагуляция клеточных остатков. Однако весьма существенно, что такие методы обработки суспензий приводят к переводу в нерастворимое состояние также и внутриклеточных ферментов. В отношении седиментации клеточных остатков эффективными коагулянтами оказались квасцы. Однако они переводят белок в нерастворимое состояние с образованием мелких, медленно оседающих, нерастворимых флокул.
Флокуляция или коагуляция ферментов с целью получения нерастворимых белковых агрегатов представляет собой достойную альтернативу классическим методам осаждения, которые требуют высоких концентраций реагентов.
На протяжении ряда лет с целью выделения внеклеточных ферментов из культуральных жидкостей использовалась дубильная кислота. В концентрациях 0,1 —1,0 % она образует легко фильтрующиеся осадки. Флокулы содержат достаточно устойчивые ферменты и могут быть промыты ацетоном для удаления дубильной кислоты. В случае применения таких носителей, как крахмал (2— 5 %), при высушивании флокул может быть достигнуто 100-кратное увеличение концентрации ферментов. Непосредственное высушивание в отсутствии носителя обеспечивает 500- кратное увеличение концентрации. Флокулы обладают тем недостатком, что трудно подвергаются растворению.
3. Центрифугирование
Отделение твердых частиц от жидкостей представляет собой основную операцию в процессе выделения ферментов. Оно включает выделение клеток из культуральной жидкости, удаление клеточных остатков, сбор осадка и выделение адсорбентов белка из белоксодержащей надосадочной жидкости. Общепринято также включать в эту операцию отделение растворенных макромолекул от растворителя с помощью ультрацентрифугирования.
3.1 Сигма-анализ
Определенные трудности при сепарировании биологических частиц центрифугированием проистекают чаще всего из недостаточного понимания принципов процесса седиментации частиц в гравитационном поле. Эффективность центрифугирования повышается при увеличении диаметра частиц, разности между плотностями частицы и жидкости и при уменьшении вязкости жидкости. Эффективность также возрастает при повышении угловой скорости, увеличении радиуса центрифугирования, увеличении объема жидкости и уменьшении толщины слоя жидкости, подвергаемой центрифугированию. Однако биологические частицы характеризуются низкой плотностью и очень малыми размерами. Они также могут находиться в среде, которая благодаря присутствию растворенных твердых частиц обладает высокой вязкостью и повышенной плотностью.
В условиях лабораторий указанные неудобства могут быть преодолены путем применения центрифуг с высокой угловой скоростью. Однако эти центрифуги имеют очень малую производительность и работают периодически с точки зрения подачи в них суспензии и извлечения надосадочной жидкостиисконцентрированных твердых частиц.В случае центрифуг промышленного типа повышение производительностиза счет увеличении радиуса центрифугирования не может быть достигнуто, так как механические напряжения возрастают пропорционально квадрату радиуса. Поэтому конструкция машины при увеличении радиуса ротора быстро становится небезопасной для применения.
Увеличение вместимости корзины центрифуги и непрерывное пропускание через нее центрифугируемой жидкости ограничивает величину безопасной угловой скорости. Эта величина также ограничивается, если твердый осадок подлежит разгрузке непосредственно в ходе операции, поскольку значительное влияние на угловую скорость оказывает степень дебаланса. Исходя из этих ограничений, промышленность создала ряд центрифуг, применимых к переработке продуктов биологической природы. Но только лишь некоторые из них оказались пригодными для выделения ферментов, так как чрезвычайно ограничивающим фактором в этом отношении являются свойства системы жидкость — «твердая» частица. Для сепарации микробных клеток, остатков животных и микробных клеток и различных типов осадков применяются главным образом три типа центрифуг: трубчатые, многокамерные и дисковые. Меньшее, хотя и очень важное, применение находят спиральные центрифуги, центрифуги с твердой корзиной и ультрацентрифуги.
3.2 Центрифуги с роторами трубчатого типа
Цилиндрический ротор подвешивается при помощи гибкого вала к находящемуся в головке центрифуги мотору или воздушной турбине. Такая конструкция снижает нагревание ротора по сравнению с тем, что имеет место при нижнем расположении привода. Ротор установлен в подшипниках скольжения из мягкого металла. Для этой цели обычно применяется латунь, и хотя теоретически контакт между обрабатываемой жидкостью и подшипниками и данном типе машин не должен иметь места, тем не менее в тех случаях, когда обработке подвергаются растворы сульфата аммония, может происходить явная контаминация их медью. Подшипники скольжения из сплава Вууда являются в этом плане относительно надежной альтернативой при более высокой или более низкой частоте вращения в машинах небольших масштабов. Ослабление таких подшипников дает возможность ротору возвращаться в центрированное положение во время любого временного разбалансирования и обеспечивает более высокую частоту вращения по сравнению со всеми другими типами центрифуг, за исключением зональных ультрацентрифуг. В случае лабораторной модели центрифуги SharpiesIP (Pennwalt) с диаметром ротора 4,5 см и частотой вращения 50 ООО об/мин развивается усилие в 62 500 g, а в случае модели 6Р (диаметр ротора 10,8 см, частота вращения 15 500 об/мин) — 14 000 g. Модель IP оснащена воздушной турбиной, модель GP приводится в действие с помощью электродвигателя.
Жидкость перекачивается в ротор через донный штуцер, омывая при этом нижние подшипники. По море продвижения жидкости вверх по ротору происходит седиментация находящихся в ней твердых частиц на стенках ротора. Освобожденная от твердых включений жидкость отбрасывается центробежной силой из ротора в его верхней части и собирается в окружающую ротор чашу. Обе модели при обработке суспензий микробных, животных и растительных клеток, большинства суспензий остатков микробных клеток, а также суспензий твердых белковых адсорбентов дают прекрасное их осветление, а также прекрасное обезвоживание полученных твердых осадков. С помощью лабораторной модели можно также отделить от жидкой фазы белковую фракцию, осажденную солями или полимерами. Однако отделение невозможно, если плотность жидкости очень высока.
Применение пластиковых гильз ускоряет удаление осадка по сравнению с тем, как это происходит в случае извлечения из машины самого центрифужного ротора. Время оборачиваемости 15— 20 мин. Однако количество накапливаемого твердого осадка при этом незначительно — около 4 кг (по влажной массе).
Вывод жидкости из центрифуги влечет за собой ценообразование и генерирование аэрозоля. Последний может представлять опасность. Поэтому все машины, занятые в производстве ферментов, должны позволять осуществлять их монтаж внутри ограждающего кожуха. Аэрация жидкой фазы при разгрузке центрифуг может повреждать находящиеся в ней ферменты, особенно когда они содержат активные сульфгидрильные радикалы. В этих случаях может оказаться полезным применение противопенных и защитных в отношении сульфгидрильных групп агентов.
Следует иметь в виду, что при входе обрабатываемой суспензии в центрифугу очень высокое угловое ускорение может привести к дезагрегированию имеющихся в ней конгломератов и элементов осадка и, следовательно, к уменьшению вероятности удаления твердых частиц из жидкости. Когда двигатель выключается, жидкость, остающаяся в роторе центрифуги, будет вытекать из нее через донный штуцери может выносить с собой определенное количество твердых частиц. Поэтому не следует смешивать эту часть жидкости с уже осветленной.
Несмотря на указанные недостатки, такие простыеи доступные машины, как описанные центрифуги, являются наиболее пригодными и универсальными для разделения жидкой и твердой фаз при получении ферментов в полупромышленных условиях.
3.3 Многокамерные центрифуги
В машинах центробежного типа размеры ротора ограничиваются механическими усилиями. Альтернативой центрифугам с роторами большой вместимости являются многокамерные центрифуги, у которых серии концентрических камер монтируются внутри и снаружи ротора (рис. 3- б). Сложность такого ротора и его жесткое монтирование на донном подшипнике выше коробки передач и электродвигателя ограничивают возможную частоту его вращения (для ротора диаметром 46 см — 6500 об/мин).Жидкость вводится в центрифугу через центральную трубку, преодолевает зигзагообразный путь вверх и вниз между концентрически расположенными камерами и удаляется с помощью насоса центростремительного действия, расположенного концентрически относительно трубы, подводящей обрабатываемую жидкость. Твердые частицы собираются на внутренних поверхностях каждой камеры, а не осевшие во внутренних камерах движутся наружу, где подвергаются воздействию еще больших седиментационных сил. Однако для достижения необходимой степени обезвоживания осадок должен почти полностью заполнять весь ротор центрифуги.
В некоторых моделях многокамерных центрифуг, по мере того как ротор замедляет свой ход, жидкость приостанавливает движение по камерами проходит через отверстие вблизи центральной оси. В других моделях жидкость удаляется посредством сифонирования. Но в обеих из них твердый осадок может быть довольно легко вымыт из ротора центрифуги. Поэтому многокамерные центрифуги хорошо подходят для одноразового применения, когда размер ротора может быть выбран довольно точно и исходя из желательного объема партии получаемого материала. Они менее годятся для случаев, когда загрузка исходной суспензии твердой фазой может существенно изменяться. Разборка многокамерных центрифуг — операция довольно длительная, поскольку прокладки при разборке сохранить весьма затруднительно, твердый осадок должен соскабливаться со стенок осадительных камер без разборки машины. Квадратное поперечное сечение ротора центрифуги и ее расположение непосредственно над коробкой передач затрудняют отвод тепла от электродвигателя и шестерен коробки передач.
Стандартная многокамерная центрифуга может охлаждаться с помощью холодной воды, подаваемой через распылительную головку, смонтированную над центрифужной корзиной. Однако такой способ охлаждения не обеспечивает отвода тепла от центростремительного разгрузочного насоса, который является вторым источником генерации тепла (температура поднимается на 15 °С при производительности, не достигающей расчетного значения).
4. Хроматография
С процессами выделения ферментов в первую очередь связаны операции разрушения клеток, экстракции с помощью растворителей, осаждения, сепарации в фазах твердое вещество — жидкость. Возможности этих операций как средства для фракционирования ферментов в промышленных масштабах ограничены. Основной удельный вес в процессах фракционирования ферментов приходится на группу операций, построенных на феномене различной миграции ферментов. Наиболее важными из указанных операций являются хроматография и связанные с ней периодические операции сорбции-десорбции. Определенную роль в качестве операций (методов) дифференциальной миграции могут играть также электрофорез и зональное ультрацентрифугирование. Периодические процессы сорбции-десорбции являются специальным случаем дифференциальной миграции, при котором один или несколько компонентов не могут мигрировать или перемещаться под влиянием определенной движущей силы, в то время как другие компоненты к этому способны. Все другие методы дифференциальной миграции по сравнению с дистилляцией характеризуются как подлинно автоматические каскадные.
При каскадных операциях множество ступеней очистки материала располагается в определенной последовательности. Каждая ступень способна обеспечить лишь небольшое обогащение продукта целевым компонентом. Но при этом общая достигаемая мощность сепарирования может быть значительной. Некоторые каскадные системы для биологической сепарации, такие, как противоточные машины, включают автоматическое сопряжение дискретных стадий сепарации. Однако в большинстве систем, включая системы для хроматографии, электрофореза и ультрацентрифугирования, сочетание стадий производится непосредственно в пределах общей системы, а индивидуальные стадии обогащения не могут быть разделены ни в одном случае, кроме теоретических выкладок. В наиболее благоприятных случаях разделяющая способность каскадных методов, используемых при биологической сепарации, выражена настолько же сильно, как и при процессах дистилляции, но при очистке внутриклеточных ферментов она является критической из-за большой сложности подлежащей фракционированию смеси.
Периодические методы сорбции-десорбции по сепарирующей способности занимают промежуточное положение между методами осаждения и хроматографии. Однако их наиболее удобно обсуждать после рассмотрения возможностей таких процессов с сильно выраженной разделяющей способностью, как процессы хроматографии, т. с. когда механизм процессов сорбции-десорбции уже выяснен.
Хроматография определяется как равномерная перколяция, т. е. фильтрация через адсорбирующий слой зернистого материала,, жидкости, проходящей через колонку, заполненную определенным, более или менее тонко раздробленным веществом, которое селективно задерживает конкретные компоненты жидкости. Это пространное определение, сформулированное в 1950 г. A. J. P. Martin, охватывает широкий диапазон селективных методов задержания и элюирования (извлечения из адсорбента) уловленных жидкостей. Для выделения ферментов с применением методов хроматографической сепарации наиболее важными представляются их водные растворы. Ниже будут рассмотрены общие пути селективного задержания ферментов методами хроматографии с тем, чтобы на этой основе обсудить проблемы масштабирования соответствующих процессов.
4.1 Адсорбция