Курсовая работа: Спутниковые системы навигации GPS и ГЛОНАСС
3. при h2 h h3 = 400 км n(h) = nm ;
4. при h h3 = 400 км n(h) = nm e
a=200 км.
Используя данную аппроксимацию для n(h) , получим формулу для оценки ионосферной погрешности беззапросных измерений дальности (псевдодальности) до зенитного НКА
R1 = bэ nm ;
bэ = 0,5 (h2 -h1 )+(h3 -h2 )+a=400 км .
Параметр bэ можно назвать толщиной эквивалентной ионосферы, у которой n(h) = nm на высотах h = 200...600 км и вне этих высот n(h) = 0.
Ионосферную погрешность R2 псевдодальности горизонтного НКА ( ) можно приблизительно оценить следующим образом:
R2 = R1 / cos ; sin = r/(r+h3 ) ,
где угол между радиолучом от горизонтного НКА ( ) и местной вертикалью на высоте h3 =400 км (середина эквивалентной ионосферы) ; r радиус Земли . Проводя вычисления , получим и соответственно R2 =3,3 R1 . Для пригоризонтного НКА ( =5 ...10 ) можно считать, что R2 =3 R1 .
Найдем величину nm для несущей частоты f=1600 МГц навигационного радиосигнала. В средних широтах в худший сезон (зимний день) в годы максимальной солнечной активности максимальная электронная концентрация на высотах 300...400 км может достигать N = 3,0 106 эл/см3 , и соответственно для f=1,6 106 кГц получим
nm =3,8 10-5 , R1 =15 м , R2 =45 м.
Ночью и летом ионосферные погрешности будут в несколько раз меньше. В годы минимальной солнечной активности ионосферные погрешности даже в зимний день в 5...6 раз меньше приведенных выше максимальных значений.
Обсудим перспективу, когда в системе ГЛОНАСС будут эксплуатироваться НКА второй модификации, которые будут излучать двухкомпонентный навигационный радиосигнал 1250 МГц вместо однокомпонентного радиосигнала 1250 МГц в НКА первой модификации. Соответственно появляется возможность проводить измерения навигационных параметров в двухдиапазонной НАП с использованием узкополосных радиосигналов 1600 МГц и1250 МГц для исключения ионосферных погрешностей измерений. Но при двухдиапазонном измерении псевдодальности значительно возрастут шумовые погрешности и погрешности из-за многолучевости по сравнении с однодиапазонной НАП (1600 МГц). На динамичных объектах с недетерминированной моделью движения (T0 =1 с) нецелесообразно применять двухдиапазонные узкополосные навигационные радиосигналы 1600 МГц и 1250 МГц для определения координат объекта, поскольку в этом случае , как было показано выше:
1. шумовые погрешности псевдодальности до пригоризонтного НКА составят (S2 ) = 12...22 м, т.е. превысят ионосферные погрешности измерений в однодиапазонной НАП в худший сезон (зимний день);
2. погрешности псевдодальности до пригоризонтного НКА, обусловленные многолучевостью, составят (S2 ) = 9 м (в худшей ситуации), т.е. будут соизмеримы с ионосферными погрешностями в однодиапазонной НАП в худший сезон (зимний день).
На малодинамичных наземных объектах целесообразно применять двухдиапазонные узкополосные навигационные радиосигналы, поскольку в НАП на малодинамичных объектах можно длительно осреднять результаты измерений (T0 =30 c) и снижать до необходимого уровня шумовые погрешности псевдодальности и погрешности из-за многолучевости.
Структура навигационных радиосигналов в системе ГЛОНАСС
В системе ГЛОНАСС каждый штатный НКА в ОГ постоянно излучает шумоподобные непрерывные навигационные радиосигналы в двух диапазонах частот 1600 МГц и 1250 МГц. В НАП навигационные измерения в двух диапазонах частот позволяют исключить ионосферные погрешности измерений.
Каждый НКА имеет цезиевый АСЧ, используемый для формирования бортовой шкалы (БШВ) и навигационных радиосигналов 1600 МГц и 1250 МГц.
Шумоподобные навигационные радиосигналы в ОГ НКА различаются несущими частотами. Поскольку для взаимноантиподных НКА в орбитальных плоскостях можно применять одинаковые несущие частоты, то для 24 штатных НКА минимально необходимое число несущих частот в каждом диапазоне частот равно 12. Данное утверждение достаточно очевидно, если иметь в виду наземных потребителей (сухопутных, морских, воздушных), поскольку в зоне радиовидимости наземного потребителя не могут одновременно находиться взаимно антиподные НКА. Космический потребитель может одновременно “видеть” взаимноантиподные НКА. Однако имеются два благоприятных обстоятельства.
Первое заключается в том, что из двух взаимноантиподных НКА хотя бы один будет находиться ниже местного горизонта по отношению к космическому потребителю. Практически невозможно применить на космическом объекте одну широконаправленную антенну, способную принимать навигационные радиосигналы от всех “видимых” НКА выше и ниже местного горизонта. Поэтому в НАП на космическом объекте применяют: либо одну широконаправленную ?