Курсовая работа: Сравнительный анализ методов оптимизации

-5.08076

-5.8063

11

3.13281

3.14256

3.13653

3.13883

-5.8071

-5.8076

12

3.13653

3.142557

3.13883

3.140255

-5.80764

-5.80745

13

|a-b|=7.893370498E-3< ε, x*=(a+b)/2=3.1407091

f(x*)=-5.807126299

Сравнив два метода, мы видим, что для данной функции лучше подходит метод дихотомии, т.к. он быстрее приводит к оптимальному решению.


2 Прямые методы безусловной оптимизации многомерной функции

Задача безусловной оптимизации состоит в нахождении минимума или максимума функции в отсутствие каких-либо ограничений. Несмотря на то что большинство практических задач оптимизации содержит ограничения, изучение методов безусловной оптимизации важно с нескольких точек зрения. Многие алгоритмы решения задачи с ограничениями предполагают сведение ее к последовательности задач безусловной оптимизации.

Рассмотрим методы решения минимизации функции нескольких переменных f, которые опираются только на вычисление значений функции f(x), не используют вычисление производных, т.е. прямые методы минимизации. В основном все методы заключаются в следующем. При заданном векторе х определяется допустимое направление d. Затем, отправляясь из точки х, функция f минимизируется вдоль направления d одним из методов одномерной минимизации. Будем предполагать, что точка минимума существует. Однако в реальных задачах это предположение может не выполняться.

Для изучения прямых методов безусловной оптимизации многомерной функции была дана функция:

F(x1,x2)=a*x*y+(b*y+c*x)/x*y → min

a=5 b=3.5 c=2.5

x1=

x2=


2.1 Метод покоординатного циклического спуска

К-во Просмотров: 790
Бесплатно скачать Курсовая работа: Сравнительный анализ методов оптимизации