Курсовая работа: Сравнительный анализ методов оптимизации

Геометрическая иллюстрация этих процедур для двумерного пространства приведена на рисунке 7.

Новые симплексы полученные в результате процедуры сжатия (a,b); отражения (c); растяжения (d)

Так как величина a принадлежит интервалу (0;1), то выбор точек z1 и z2 соответствует сжатию симплекса; b приближенно равно 1, поэтому выбор точки z3 соответствует отражению, а g>1 и выбор точки z4 приводит к растяжению симплекса.

Отметим, что при деформациях утрачивается свойство правильности исходного симплекса.

Алгоритм метода поиска точки минимума функции по деформируемому симплексу

Начальный этап. Выбрать параметр точности eps, параметры a, b и g, базовую точку x0 , параметр a и построить начальный симплекс. Вычислить значение функции f(x0).

Основной этап. Шаг 1. Вычислить значения функции в вершинах симплекса x1,..., xn.

Шаг 2. Упорядочить вершины симплекса x0,..., xn так, чтобы f(x0)<=f(x1)<=...<=f(x[n-1])<=f(xn).

Шаг 3. Проверить условие (1/n)Sum[f(xi)-f(x0)]^2 < e^2, i=[1,n].

Это одно из возможных условий останова. При его выполнении "дисперсия" значений f(x) в вершинах симплекса становится меньше e2, что, как правило, соответствует либо малому ребру a симплекса, либо попаданию точки минимума x* внутрь симплекса, либо тому и другому одновременно.Если это условие выполнено, то вычисления прекратить, полагая x*= x0. В противном случае перейти к шагу 4.

Шаг 4. Найти xс и пробные точки zk , k=1,...,4 по формулам (2). Найти f(z*)=minf(zk). Если f(z*)<f(xn), то положить xn = z* и перейти к шагу 2. Иначе - перейти к шагу 5.

Шаг 5. Уменьшить симплекс, полагая xi=( xi+ x0)/2, i=1,...,n перейти к шагу 1.

На практике хорошо зарекомендовал себя следующий набор параметров a=1/2, b=1, g=2, поэтому он и был использован в программе.

Таблица 5 – Метод деформированного симплекса

№ шага

Z(x0,y0)

Z(x1,y1)

Z(x2,y2)

1

5,25127562399313

5,35273629457997

4,72465845389651

2

4,47048359472409

5,52371793491734

4,32427361628427

3

4,26941489330181

4,56183485018145

К-во Просмотров: 812
Бесплатно скачать Курсовая работа: Сравнительный анализ методов оптимизации