Курсовая работа: Сравнительный анализ методов оптимизации
На рисунке 12 представлена фигура, объем, которой необходимо максимизировать при заданной площади поверхности
Рисунок 12 – Фигура для максимизации объема при заданной площади поверхности
Найдем полную площадь поверхности данной фигуры(без верхней поверхности):
,
найдем объем фигуры:
Эта задача представляет собой пример задачи условной оптимизации: необходимо найти максимальный объем при заданном значении площади поверхности.
Эту задачу можно решить двумя методами:
Метод преобразования целевой функции,
метод штрафных функций.
3.1 Метод преобразования целевой функции
Т.к. положено ограничение типа равенства, то из этого ограничения одну переменную выразим через другую и подставим полученную зависимость в целевую функцию и получим преобразованную целевую функцию, но без ограничений.
V = 4/3∙a2∙h2+7/3∙h1∙a2 → max (1)
S = 6∙a∙h1+4∙h2∙a (2)
Выразим a из (2) и подставим в (1), получим:
V = s2∙(4∙h2+7∙h1)/3∙(6∙h1+4∙h2)2
Теперь, задав начальные условия, значение площади поверхности, и выбрав нужную точность можно решить задачу любым методом безусловной оптимизации.
Возьмем, например, метод правильного симплекса, и зададим начальные условия: а=1м, h1=3м, h2=4м, s=34м. Для метода симплекса выберем точность ε=0,001.
Т.е максимальный объем V=12,7151461307724, при заданной площади получается при h1 = 2,946875, и h2 = 3,83229490168751
3.2 Метод штрафных функций
Методы штрафных функций относятся к группе непрямых методов решения задач нелинейного программирования:
f(x) -> min;
gi(x) 0, i 1, ..., k;
hj(x) 0, j 1, ..., m;
a x b.
Они преобразуют задачу с ограничениями в последовательность задач безусловной оптимизации некоторых вспомогательных функций. Последние получаются путем модификации целевой функции с помощью функций-ограничений таким образом, чтобы ограничения в явном виде в задаче оптимизации не фигурировали. Это обеспечивает возможность применения методов безусловной оптимизации. В общем случае вспомогательная функция имеет вид
F(x,a) f(x) +rS(x)
Здесь f(x) - целевая функция задачи оптимизации; S(x) - специальным образом выбранная фун