Курсовая работа: Статистическое изучение развития переработки животноводства по производству молока в сельскохозяйственных предприятиях и объединениях

3. Подбираются параметры корреляционной зависимости, параметры уравнения y=ax+b, а также оценивается степень соответствия адекватности найденного уравнения к фактическим данным.

Первую задачу решают путем вычисления по эмпирическим данным выборочного коэффициента корреляции , который количественно оценивает тесноту связи, если от 0,1-0,3 связь слабая, если 0,3-0,5 умеренная, 0,5-0,7 заметная, 0,7-0,9 тесная, 0,9-0,99 весьма тесная.

Регрессия – это односторонняя вероятностная зависимость между случайными величинами.

Задачи регрессионного анализа:

1. определение формы зависимости и определение общего вида управления регрессии и количества факторов входящих в него;

2. оценка параметров уравнения регрессии;

3. задача интерполяций и экстраполяций.

Экстраполяция – это распространение тенденций на прошлый и будущий период, она широко применяется в прогнозировании.

Интерполяция – это расчет недостающих значений результативного принципа внутри заданных значений.

Создадим модель влияния затрат на корма, надоя и числа коров на себестоимость 1 ц молока. Пусть y – себестоимость 1 ц молока, руб. (результативный признак); х1 – затраты на корма, тыс. руб. (факторный признак); х2 – надой, кг (факторный признак); х3 – число коров, гол (факторный признак).

Рассмотрим парную линейную корреляционную зависимость между себестоимостью 1 ц молока, расходов на корма, надоя и числа коров:

Таблица 3

Показатели переменных построенной модели

obs Y X1 X2 X3
1 277 258 2028 60
2 526 524 2047 103
3 341 614 3551 123
4 680 1183 2553 185
5 427 1007 2070 223
6 475 1372 2397 223
7 408 819 1870 250
8 510 1474 2009 275
9 788 2837 2101 282
10 471 1239 2618 284
11 292 711 2117 288
12 293 0 2903 296
13 350 1502 3360 306
14 360 1283 2251 314
15 447 2059 2825 350
16 337 1453 2193 388
17 205 0 2324 392
18 284 1462 3111 408
19 338 2849 2448 552
20 346 2321 2367 579
21 383 744 1998 592
22 387 2244 2246 621
23 219 3095 4219 698
24 345 2556 2101 701
25 480 6052 2349 713
26 219 3527 4159 816
27 255 2904 2622 892
28 276 4512 3234 928
29 216 2829 3169 1065
30 269 4514 3422 1103
31 278 7320 4069 1314

Данные таблицы 3 позволяют наглядно рассмотреть показатели себестоимости 1 ц молока, расходов на корма, надоя и числа коров.

Создадим группу переменных Y, X1, X2 и X3 рассмотрим описательные статистики этой группы переменных (Табл.4)

Таблица 4

Y X1 X2 X3
Среднее значение 370.3871 2105.290 2668.742 494.3226
Медиана 345.0000 1474.000 2397.000 388.0000
Максимальное значение 788.0000 7320.000 4219.000 1314.000
Минимальное значение 205.0000 0.000000 1870.000 60.00000
Среднеквадратическое отклонение 132.8086 1712.328 681.0140 321.7374
Коэффициент ассиметрии 1.320378 1.299261 0.954170 0.844108
Эксцес 4.871091 4.534979 2.820935 2.849246
Jarque-Bera 13.52966 11.76512 4.745360 3.710701
Вероятность 0.001154 0.002788 0.093231 0.156398
Количество наблюдений 31 31 31 31

Анализируя данные описательных статистик группы переменных можно изречь, что всего исследуется 31 хозяйство. Среднее значение себестоимости 1 ц молока – 370,39 руб., средние расходы на корма – 2105,29 тыс. руб., надоя – 2668,74 кг и числа коров – 494,32. Максимальное значение себестоимости 1 ц молока – 788 руб., расходов на корма – 7320 тыс. руб., надоя – 4219 кг, числа коров - 1314. Среднеквадратическое отклонение для себестоимости 1 ц молока, расходов на корма, надоя и числа коров равны соответственно 132,81, 1712,33, 681,01 и 321,74.

Для анализа зависимости между себестоимостью 1 ц молока, приростом и надоем и числом коров нужно разобрать корреляционную матрицу (табл. 5).

Таблица 5

Корреляционная матрица

Y X1 X2 X3
Y 1.000000 -0.117609 -0.470327 -0.482291
X1 -0.117609 1.000000 0.497259 0.824470
X2 -0.470327 0.497259 1.000000 0.539081
X3 -0.482291 0.824470 0.539081 1.000000

Данные корреляционной матрицы позволяют судить о наличии зависимости между себестоимостью 1 ц молока и расходами на корма: связь обратная слабая (rxy = - 0,12), между себестоимостью 1 ц молока и надоем - связь обратная умеренная (rxy = - 0,47), между себестоимостью 1 ц молока и числом коров связь обратная умеренная (rxy = - 0,48). Обратная связь свидетельствует о том, что при увеличении одного показателя, второй будет уменьшаться. Прослеживается взаимосвязь между расходами на корма и надоем – прямая умеренная (rxy = 0,5), так же существует взаимосвязь между надоем и числом голов – связь прямая заметная (rxy = 0,54) и между расходами на корма и числом коров – связь прямая очень тесная (rxy = 0,84), что объясняется тем, что чем больше голов скота, тем выше расходы на корма. В результате анализа мы убеждаемся в том, что факторы не автокоррелированы.

Создадим модель парной линейной регрессии.

Таблица 6

Зависимая переменная: Y
Метод: Наименьших квадратов
Диапазон наблюдений: 1 - 36
Использовалось наблюдений: 36
Переменная Коэффициент при соответствующей переменной Стандартная ошибка t-значение Вероятность отклонения гипотезы H0
X1 0.072500 0.017376 4.172502 0.0003
X2 -0.071391 0.029354 -2.432024 0.0219
X3 -0.435747 0.095259 -4.574359 0.0001
C 0.072500 0.017376 4.172502 0.0003
Коэффициент детерминации 0.571359 Среднее значение зависимости переменной 370.3871
Приспособленный коэффициент 0.523732 Стандартное отклонение зависимой переменной 132.8086
Стандартная ошибка регрессии 91.65407 Информационный критерий Акайка 11.99383
Сумма квадратов отклонений 226812.6 Критерий Шварца 12.17886
Тестналогарифм. уравнения -181.9044 F-значение 11.99658
Статистики Дарбина-Ватсона 1.777453 Вероятность F-значения 0.000036

Оценка параметров уравнения линейной регрессии. Коэффициент детерминации равен 0,57, следовательно - зависимость умеренная. Величина стандартной ошибки регрессии составила91,65, что означает достаточно большую величину стандартной ошибки регрессии. Сумма квадратов отклонений равна 226812,6. F - значение составило 11,99. Отсюда можно сделать вывод, что зависимость линейная.

Рассмотрим уравнение регрессии:

Y = 0.0725000065*X1 - 0.07139065245*X2 - 0.4357471335*X3 + 623.6764102

Значение коэффициентов уравнения регрессии можно интерпретировать следующим образом: увеличение затрат на корма на 0,05 единиц, уменьшение надоя на 0,07 единиц и уменьшение числа голов на 0,23 единицы влечет повышение реализации мяса на 623,7 ед.


Глава 5. Анализ динамики

Рядом динамики называют ряд статистических показателей, характеризующих изменение явления во времени. Целью данного приёма является определение колеблемости явления во времени, выявление основной тенденции (тренда).

В таблице 6 исходные данный для расчета рядов динамики.

К-во Просмотров: 200
Бесплатно скачать Курсовая работа: Статистическое изучение развития переработки животноводства по производству молока в сельскохозяйственных предприятиях и объединениях