Курсовая работа: Стійкість до голодування і активність АДГ у Drosophila melanogaster із природних популяцій України

Тривалість життя дорослої мухи з моменту її вилуплення із лялечки в лабораторних умовах складає 3 – 4 тижні та в значній мірі залежить від умов утримання (температури, вологості, якості корму, густоти заселення, наявності бактерій). В спеціальних дослідах дрозофіла жила до 153 днів (Медведєв, 1966). Самки, як правило, мають більшу тривалість життя, ніж самці, що може бути викликане генетичними та фізіологічними причинами.

Справді, про більшу тривалість життя самок було сказано давно. Ще Дарвін розглядав меншу тривалість життя самців як “природню конституційну властивість, що обумовлена статтю” (Гаврилов, 1991). Таким чином факти про більшу життєздатність особин жіночої статі мають право на існування.

Відмінності в тривалості життя в межах однієї статі, як правило, можуть бути зумовлені фізіологічними причинами. Так, віргінні самки, мають більшу тривалість життя, ніж запліднені (Зіміна, Малиновський, 1977). Згідно із літературними даними, направленість статевих відмінностей в резистентності до голодування є генетично детермінованою (Хаустова, 1995). Вивчення тривалості життя самок та самців дрозофіли в умовах харчового стресу – цікава і водночас важлива проблема сучасної генетики та науки в цілому.

Стресом можна назвати певний фактор середовища, внаслідок дії якого послаблюється стійкість організму до даного чинника. Якщо організм зміг вижити після дії стресового фактора, то у нього виробляються специфічні адаптації, що пом’якшують наслідки при повторній його дії (Haffman, Parsons, 1991; Randall, 1997). Однією із найбільш поширених причин харчового стресу у тварин, у тому числі і у дрозофіли, є скорочення кількості їжі або її недостатня якість.

Відомо, що енергетичні процеси відіграють центральну роль в організмі, тому голодування провокує зміни на різних рівнях прояву фенотипу – від змін внутрішньоклітинних сигналів – до зсувів фаз життя в онтогенезі.

Існує думка, що збільшена тривалість життя потребує від організмів певних змін, які, скоріш за все, взаємопов`язані і з іншими характерними рисами пристосованості виду. Отже, природний добір повинен підтримувати ті генотипи, що здатні змінювати свої фізіологічні особливості для підвищення стійкості до голодування у відповідь на сигнали, що сповіщають про початок періоду голодування. Іншими словами, очікується, що дана ознака в деякій мірі покаже рівень адаптивної фенотипічної пластичності (Partridge, 2005).

Встановлено, що скорочення кількості їжі (в основному дріжджів) для дорослих мух, призводить до збільшення їх витривалості майже в два рази в порівнянні з тими, які взагалі не отримували дріжджі з їжею (Chippindale et al., 1998; Leroi et al., 1994; Kapahi et al., 2004; Piper et al., 2005; Burger et al., 2007). В той же час показано, що у мух, які піддавались надто тривалому обмеженню раціону, виживаність навпаки знижувалась (Burger et al., 2007).

Відомо, що підвищена стійкість до голодування та до інших чинників стресу визначає стан особини під час діапаузи, яка може бути викликана низькими температурами або коротким фотоперіодом. Це означає, що певній особині буде легше витримати період діапаузи, якщо у неї виробилась висока витривалість під час голодування, пережитого раніше.

Варто також зазначити, що механізми фізіологічних реакцій на харчовий стрес зберігаються і закріплюються у особин усього тваринного світу (Tatar; 2003; Partridge et al., 2005; Arsham, Neufeld, 2006). Таким чином, дані щодо розуміння генетики і фізіології адаптації до голодування, отримані в експериментах на дрозофілі, можна застосовувати не лише до мух, а й до комах та деяких інших тварин взагалі.

Практично у всіх дослідженнях, що стосуються вивчення стійкості до голодування Drosophila melanogaster , мова йде про гостре голодування, тобто повне позбавлення їжі (Huey, 2004). Але в роботах деяких авторів показано, що мухи дрозофіли також дуже чутливі до нестачі води, адже існує досить тісний зв`язок між стійкістю до голодування та здатністю витримати нестачу вологи (Partridge, Piper, 2005). Виходячи із наведених даних автори рекомендують вносити воду у вигляді вологих пробок чи смужок фільтрувального паперу до середовища, де голодують мухи. Отже, цю рекомендацію варто враховувати при постановці експериментів.

Зазвичай тривалість життя особин за голодування визначають як час, що проходить до загибелі 50% (Lt 50 ) мух в умовах досліду. В залежності від генотипу та умов середовища, середній час виживання без корму коливається від 20 годин для самців і до більш ніж 50 годин для самок (Harshman , Shmidt, 1998; Harshmann, 1999; Baldal, 2005; Harbison, 2005).

Еволюційний взаємозв’язок між голодуванням та тривалістю життя був підтверджений деякими експериментами з використанням методів селекції. Дані відносно дрозофіл отримані головним чином в дослідженнях на Drosophila melanogaster . Досліджувані лабораторні лінії дрозофіли, відібрані за ознакою тривалості життя, за даними деяких авторів (Rose, Archer, 1996) демонстрували і відносно кращу стійкість до голодування. За даними інших авторів (Rose et al., 1992) в свою чергу, селекція на стійкість до голодування в умовах експерименту призводила до збільшення тривалості життя. В ході досліджень також було з’ясовано, що мутанти Drosophila melanogaster з великою тривалістю життя зазвичай є стійкими і до інших чинників стресу (Lin, Benzer, 1998).

Добре відомо, що гени всіх живих організмів кодують інформацію для синтезу білкових молекул, із яких створюються всі компоненти клітин живих організмів та які приймають участь у каталізі всіх біохімічних процесів. Фактично кожну біохімічну функцію чи елемент тіла у дрозофіли вдалося пов’язати із дією того чи іншого гена (Тоцький, 2002). Усестороннє розуміння еволюційних механізмів становлення стійкості до голодування потребує ідентифікації та характеристики генних локусів, що вносять вклад в спадкову мінливість цієї ознаки та лежать в основі її еволюційних змін. Мутації або ж маніпуляції з експресією генів, що посилюють витривалість до голоду, вказують на можливості її змін в штучних умовах, але досі залишається незрозумілим чи мають встановлені зміни місце у природі.

Певне розуміння генетичних аспектів, а саме успадковування та мінливість стійкості до голоду, може бути отримане шляхом аналізу схрещувань між стійкими та нестійкими генотипами. Вчені використали цей підхід для вивчення генетичної структури відмінностей між двома парами географічно віддалених популяцій дрозофіли із Південної Америки та Австралії. Цікавим виявилось те, що обидві статі мух у Південній Америці та самки дрозофіл у Австралії виявляли позитивні ефекти домінування по материнській лінії, тобто нащадки виявляли вищу стійкість до голодування, якщо ця ознака була високою у матері.

Разом із простим материнським ефектом були виявлені також парадоксальні результати, а саме: менш стійкі до голоду матері давали більш стійких нащадків обох статей. Причини виявлених закономірностей і досі залишаються невідомими.

Результати, отримані при картуванні генів кількісних ознак, а також дані тестування на кількісну комплементацію (Mackay, Fry, 1996) дозволили визначити шлях до ідентифікації специфічних локусів, що відповідають за неоднакову стійкість до голодування. Як випливало із попередніх даних, природний поліморфізм локусу десатурази-2 міг впливати на стійкість мух до голодування (Greenberg et al., 2003), але подальші експерименти (Coyne, Elwyn, 2006) не підтвердили це припущення. Використовуючи більш комплексний підхід, було ідентифіковано 13 локусів (6 із них мали статево-специфічний ефект), які вносять вклад в розбіжності щодо стійкості до голодування між двома лабораторними лініями мух. Ці локуси включають гени, що беруть участь в оогенезі (ген l(2)G270 впливає на розвиток яйцеклітини) та метаболізмі (гени, що регулюють розподіл жирів). Також були визначені гени, що впливають на харчову поведінку мух (наприклад, ген NaСР60Е).

Вченими також вивчалися зміни в експресії генів, викликані умовами голодування. Даний підхід не є досить інформативним щодо генетичної мінливості здатності витримати голод, але проливає світло на молекулярні механізми відповіді на харчовий стрес. При голодуванні гени, що задіяні в біосинтезі білків і гідролазній активності, мають тенденцію до неврегульованості та надлишкового синтезу. Таким чином організм намагається компенсувати нестачу поживних речовин і, як наслідок, пережити несприятливі умови голодування.

Відмінності в ході добору по стійкості до голодування можуть призводити до відмінностей за цією ознакою між популяціями. Докази таких відмінностей знайдені при вивченні великих географічно віддалених популяцій. Вченими було показано, що на Індійському півострові має місце негативна кореляція між стійкістю до голодування та географічною широтою для п’яти видів дрозофіли (включаючи і Drosophila melanogaster ). Аналогічним чином, розподіл по довготі був недавно показаний для двох інших видів дрозофіли на Індійському півострові (Parkash, 2005). Навпаки, позитивна кореляція між досліджуваною ознакою та широтою у Drosophila melanogaster , була виявлена на сході Південної Америки (Schmidt, 2005). В той же час ніяких варіацій по даній ознаці не було виявлено у особин з Південної Америки та Східої Австралії. Таким чином, наведені дані свідчать про те, що залежність між стійкістю до голодування та географічною широтою підтверджується не завжди.

Аналізуючи дані літератури щодо стійкості до голодування особин популяції Drosophila melanogaster , можна відзначити, що за останні роки були проведені дослідження, спрямовані на розкриття молекулярних та фізіологічних механізмів відповіді на харчовий стрес. Існує думка, що дана ознака відтворює рівень адаптивної пластичності та являється частиною механізму виживання, який може частково піддаватися інсуліновій системі регуляції.

Що стосується розуміння екологічних аспектів витривалості до голодування, то і досі залишається багато питань відносно природного добору за цією ознакою.

Дрозофіла надає унікальну можливість для повноцінного розуміння та інтеграції різних аспектів еволюційної відповіді на харчовий стрес.

1.2 Активність алкогольдегідрогенази у Drosophila melanogaster

Механізми адаптації генотипів та популяцій до дії екологічних факторів є досить цікавими і тому інтенсивно вивчаються в багатьох лабораторіях. В даному контексті вважається доцільним вияснити роль ферменту алкгольдегідрогенази (АДГ) в життєдіяльності та адаптації у Drosophila melanogaster . Ген-ензимна система АДГ на протязі тривалого часу притягує увагу численних дослідників в різних областях генетики – від молекулярної до популяційної, завдяки відносно простій ідентифікації ферменту, значному поліморфізму і тій ключовій ролі, що АДГ відіграє в життєдіяльності дрозофіли (цей фермент допомагає здійснювати детоксикацію та утилізацію спирту, який являється важливим компонентом середовища існування плодової мушки).

Фермент АДГ (по класифікації ферментів – КФ 1. 1. 1. 1.) відноситься до класу оксидоредуктаз, об`єктом дії яких є група СН-ОН.

Ацетальдегід + НАДН + Н+ → етанол + НАД

Алкогольдегідрогеназа широко розповсюджена в природі. Алкогольдегідрогеназна активність притаманна різним клітинам всіх живих організмів.

Піридиновий нуклеотид в якості коферменту відіграє головну роль в реакції з усіма вивченими АДГ, при цьому фермент може окислювати не лише етанол, але й інші первинні та вторинні спирти [Діксон, 1982]. При перетворенні етилового спирту в ацетальдегід спостерігається впорядкована багатоточкова взаємодія в АДГ між ферментним білком, субстратом і коферментом.

АДГ дрозофіли складається із двох субодиниць з молекулярною масою 60 кДа та відрізняється від інших алкогольдегідрогеназ відсутністю Zn 2+ . Крім цього АДГ дрозофіли проявляє неабияку спорідненість до вторинних спиртів. Швидкість реакції, що каталізується АДГ Drosophila melanogaster , при використанні вторинних спиртів як субстратів, в декілька разів більша, ніж швидкість окислення етанолу. Амінокислотна послідовність АДГ дрозофіли відрізняється від інших алкогольдегідрогеназ. При картуванні пептидів АДГ Drosophila melanogaster виявлена наявність активного залишку цис-135 в домені, що зв'язує НАД+ , а також двох залишків амідів на С-кінці пептиду. Таким чином, буде відрізнятися також і механізм дії АДГ дрозофіли – даний фермент формує нестійкий комплекс із субстратом і коферментом [Chambers, 1984].

Алкогольдегідрогеназа відіграє головну роль в каталізі останнього етапу спиртового бродіння, що притаманне дріжджам, а також тканинам, що знаходяться в анаеробному стані [Ленінджер,1985; Страєр, 1985]. Для АДГ плодової мушки більш характерною є зворотна реакція окислення спиртів до альдегідів чи кетонів, оскільки спирти є важливим компонентом середовищ існування дрозофіли. Drosophila melanogaster відрізняється від інших видів дрозофіли здатністю використовувати етанол та інші спирти як джерела поживних речовин на різних стадіях свого розвитку. АДГ є основним ферментом в метаболізмі етилового спирту у мух. Мутанти, яким не притаманна алкогольдегідрогеназна активність, є дуже чутливими до токсичної дії спирту та не можуть використовувати його [Economos, 1986 ; McKechnie , 1984].

К-во Просмотров: 173
Бесплатно скачать Курсовая работа: Стійкість до голодування і активність АДГ у Drosophila melanogaster із природних популяцій України