Курсовая работа: Стійкість системи лінійних алгебраїчних рівнянь
а21 а22-l ... а2n =0
an1 an2 ann-l
або
ln- d1 ln-1+ d2 ln-2- ...+(-1)n-1 dn-1 l+(-1)n dn=0 . (5)
Поліном, що стоїть в лівій частині рівняння (5), називається характеристичним поліномом матриці А. Коефіцієнти його di(i=1,2,…,n) визначаються за наступними правилами. Коефіцієнт d1= .
Це число називається услід матриці А і позначається так: d1=Sp А. Коефіцієнт d2 є сума всіх діагональних мінорів другого порядку матриці А. Взагалі, коефіцієнт dk є сума всіх діагональних мінорів k-го порядку матриці А. Зрештою, вільний член dn рівний визначнику матриці А:
dn=det А.
Характеристичне рівняння (5) є алгебраїчне рівняння n-ої степені відносно l і, отже, як доводиться в алгебрі, має щонайменше один дійсний або комплексний корінь. Нехай l1 l2,… lm(m £n) — різні корені рівняння (5). Ці корені називаються власними значеннями, або характеристичними числами, матриці А, а сукупність всіх власних значень називається спектром матриці А. Візьмемо який-небудь корінь l=lj і підставимо його в рівняння (4). Тоді будемо мати (А-ljЕ )х=0 або, в розгорненому вигляді
(а11-lj )х1 +а12 х2 +…+а1n xn =0
а21х1+(а22-lj )х2 + ...+а2n xn =0
an1х1+an2х2+ ...+(ann -lj )xn =0. . . . . . . . . . . . (6)
Оскільки визначник системи (6) det(А-ljЕ )=0, то ця система явно має ненульові розв'язки, які і є власними векторами матриці А, відповідними власному значенню lj . Якщо ранг матриці А-ljЕ рівний r(r<n), то існує k=n r лінійно незалежних власних векторів
х(1j) , х(2j) ...,х(kj)
відповідаючих кореню lj . Теорема доведена.
Метод Левер’є
Відомо багато інших способів одержання характеристичного многочлена.
Розглянемо метод Левер’є, що дозволяє вирішити проблему власних значень, в основу якого покладено обчислювання слідів степенів матриці А. Вказаний метод потребує більшої кількості операцій, ніж метод Данилевського, але зовсім не чутливий до частинних особливостей матриці, зокрема ”провалів” проміжних визначників.
Нехай характеристичний поліном матриці А записано у вигляді (5) де
l1, l2, l3, ......... ln – його корені, серед яких деякі можуть бути рівні. Позначимо
(7)
Суми , k=1-n степенів коренів многочлена зв’язані з коефіцієнтами рівняння ( 5) формулами Ньютона
k= 1,…..,n (8)
Якщо обчислити сліди ,……., матриць , ….., ,то з (8) можна послідовно обчислити коефіцієнти
Покажемо, як визначаються числа :
Оскільки матриця має своїми власними значеннями числа ,… то
.
Таким чином, процес обчислення зводиться до послідовного обчислення степенів матриці А, обчислення їх слідів (суми діагональних елементів ) і, нарешті , до розв’язання рекурентної системи (8). Обчислення n степенів матриці А (в останньої матриці (А) треба знайти тільки діагональні елементи) потребує великої кіолькості одноманітних операцій , які легко реалізуються за доомогою ПВМ. Кількість необхідних за методом Левер’є множень дорівнює ½(-1)(2-2++2) )