Курсовая работа: Строение идеалов полукольца натуральных чисел

Идеал, отличный от полукольца S, называется собственным.

Определение 3. В полукольце S наименьший из всех идеалов, содержащих элемент , называется главным идеалом, порожденным элементом a.

Известно, что кольцо целых чисел является кольцом главных идеалов. Идеалы в не обязательно являются главными, но все они конечно порождены. Главные идеалы в будем обозначать aN, где a – элемент, порождающий идеал.

Определение 4. Идеал коммутативного полукольца называется конечно порожденным, если найдется конечное множество элементов таких, что

Теорема 1. Произвольный идеал полукольца натуральных чисел конечно порожден.

Доказательство. Пусть – произвольный идеал из , – его наименьший ненулевой элемент. Выберем, если возможно, наименьший элемент из N. В общем случае на очередном шаге будем выбирать наименьший элемент из множества . Заметим, что выбираемые элементы обязаны быть несравнимыми по модулю . По этой причине процесс выбора будет конечным, и на некотором шаге получим

Определение 5. Пусть – идеал полукольца натуральных чисел. Множество элементов из назовем системой образующих идеала, если и никакой элемент системы образующих нельзя представить в виде комбинации с неотрицательными коэффициентами остальных элементов системы.

Очевидно, что для любого идеала система образующих определяется однозначно. Множество элементов , построенное в доказательстве теоремы 1, является системой образующих.

Если имеется в виду конкретная система образующих идеала, то будем изображать ее в круглых скобках, например: (2,3)={0,2,3,4,…}=\{1}.

Аналог теоремы Гильберта о базисе, которая утверждает, что если R – коммутативное кольцо, каждый идеал которого конечно порожден, то любой идеал кольца многочленов над R является конечно порожденным, неверна в классе полуколец, и примером тому служит полукольцо . Как установлено, идеалы в конечно порождены. Покажем, что этим свойством не обладает полукольцо [x]. Пусть I – множество всех многочленов ненулевой степени над . Ясно, что I‒ идеал. Любой из многочленов x, x+1, x+2,…, нельзя нетривиальным образом представить в виде суммы многочленов из I, значит, все эти многочлены необходимо лежат в любой системе образующих идеала I. Таким образом, I не является конечно порожденным, и полукольцевой аналог теоремы Гильберта не верен.

Теорема 2. Пусть ‒ система образующих идеала полукольца . Начиная с некоторого элемента , все элементы идеала образуют арифметическую прогрессию с разностью , являющейся наибольшим общим делителем чисел .

Доказательство. Пусть ‒ НОД всех представителей системы образующих идеала . По теореме о линейном представлении НОД для некоторых целых . Положим ‒ максимум из абсолютных значений чисел . Тогда элементы и лежат в идеале . Очевидно, что ‒ наименьшее натуральное число, на которое могут отличаться два элемента идеала , и . Обозначим . Пусть , для некоторых целых , и одно из них, допустим , неположительно. В таком случае рассмотрим число с такими достаточно большими натуральными коэффициентами , чтобы для любого целого выполнялось . Тогда для любого такого элемент

лежит в . Таким образом, начиная с элемента , мы имеем арифметическую прогрессию в точности из элемента, лежащих в идеале , причем первый и последний элементы отличаются на . Прибавляя к каждому из этих элементов, начиная с , число , мы получим следующие элементов этой же прогрессии. Такую процедуру можно повторять сколь угодно долго, получая элементы прогрессии, очевидно, лежащие в идеале . Показали, что, по крайней мере, с числа все элементы идеала образуют арифметическую прогрессию.

Следствие 1. Пусть ‒ произвольный идеал полукольца . Существует такое конечное множество элементов из , что является главным идеалом.

Следствие 2. Если система образующих идеала полукольца состоит из взаимно простых в совокупности чисел, то, начиная с некоторого элемента, все последующие натуральные числа будут принадлежать идеалу .

Замечание. Пусть , и . Между идеалами и , порожденными системами образующих и соответственно, существует простая связь, а именно: состоит из всех элементов идеала , умноженных на число . Тем самым, изучение идеалов полукольца натуральных чисел сводится к идеалам с взаимно простой системой образующих. В дальнейшем будем считать, что образующие идеала в совокупности взаимно просты и занумерованы в порядке возрастания.

Теорема 3. В полукольце всякая строго возрастающая цепочка идеалов обрывается.

Доказательство. Пусть ‒ возрастающая цепочка в . Тогда ‒ конечно порожденный идеал с образующими . Каждый лежит в некоторых идеалах из цепочки, значит, найдется идеал из цепочки, содержащий все элементы . Получаем , следовательно, ‒ последний идеал в нашей цепочке.

Из доказанной теоремы делаем вывод о том, что исследуемое полукольцо натуральных чисел является нетеровым.

1.2 Описание идеалов в

Определение 6. Собственный идеал Pкоммутативного полукольца S называется простым, если или для любых идеалов A и B.

Теорема A. Если S – коммутативное полукольцо, то идеал P прост тогда и только тогда, когда влечет [6].

Простыми идеалами в являются, очевидно, нулевой идеал и идеалы p. Идеал, порожденный составным числом, не может быть простым. Более того, если составное число n=ab является элементом системы образующих идеала I, то элементы a,b не лежат в идеале I, и следовательно, I не прост. Таким образом, система образующих простого идеала может состоять только из простых чисел.

Пусть P – простой идеал в , не являющийся главным, и ‒ элементы из его системы образующих. Поскольку и взаимно просты, то по второму следствию теоремы 2 все натуральные числа, начиная с некоторого, лежат в идеале P. Значит, P содержит некоторые степени чисел 2 и 3. В силу простоты идеала P, 2 и 3 будут лежать в P. Идеал, порожденный числами 2 и 3, является единственным простым идеалом, не являющимся главным.

Таким образом, простыми идеалами полукольца являются следующие идеалы, и только они:

1. нулевой идеал;

К-во Просмотров: 340
Бесплатно скачать Курсовая работа: Строение идеалов полукольца натуральных чисел