Курсовая работа: Строение идеалов полукольца натуральных чисел
Выполнила студентка V курса
физико-математического факультета
Вахрушева Ольга Валерьевна
Научный руководитель: д.ф-м.н., профессор кафедры высшей математики Чермных В. В. Рецензент: д.ф-м.н., профессор, заведующий кафедрой высшей математики Вечтомов Е.М.
Киров 2010
Содержание
Введение
Глава 1. Структура идеалов в
1.1 Базовые понятия и факты
1.2 Описание идеалов в
Глава 2. Константа Фробениуса
Библиографический список
Приложение 1. Примеры работы программы "FindC" для различных исходных данных
Приложение 2. Описание алгоритма работы программы с помощью блок-схем
Приложение 3. Полный текст программы "FindC"
Введение
Теория полуколец – один из интенсивно развивающихся разделов общей алгебры, являющийся обобщением теории колец. Весомый вклад в ее изучение и развитие внесли Е.М. Вечтомов и В.В. Чермных. Большой интерес для изучения представляет собой полукольцо натуральных чисел с обычными операциями сложения и умножения. Его роль в теории полуколец примерно такая же, как и кольца целых чисел в теории колец. Вопросу строения полукольца натуральных чисел посвящена глава в книге В.В. Чермных "Полукольца" [6].
Целью данной квалификационной работы является исследование полукольца натуральных чисел и его строения. Более точно выясняется вопрос, как устроены идеалы этого полукольца, а также осуществляется отыскание либо определение границ расположения константы Фробениуса для некоторых идеалов.
Выпускная квалификационная работа состоит из двух глав. В главе 1 представлены основные определения и теоремы, связанные с полукольцом натуральных чисел, и дано описание его идеалов. Глава 2 посвящена исследованию проблемы нахождения константы Фробениуса.
Глава 1. Структура идеалов в
1.1 Базовые понятия и факты
Определение 1. Непустое множество S с бинарными операциями "+" и "×" называется полукольцом, если выполняются следующие аксиомы:
1. (S, +) - коммутативная полугруппа с нейтральным элементом 0;
2. (S, ×) - полугруппа с нейтральным элементом 1;
3. умножение дистрибутивно относительно сложения:
a(b + c) = ab + ac, (a + b)c = ac + bc длялюбых a, b, c Î S;
4. 0a = 0 = a0 длялюбого aÎ S.
По этому определению полукольцо отличается от ассоциативного кольца с единицей отсутствием операции вычитания, и именно это вызывает основные трудности при работе с полукольцами.
Несложно показать, что множество натуральных чисел с обычными операциями сложения и умножения при допущении, что , является полукольцом.
Определение 2. Непустое подмножество I полукольца S называется левым идеалом полукольца S, если для любых элементов элементы a+b и sa принадлежат I. Симметричным образом определяется правый идеал. Непустое подмножество, являющееся одновременно левым и правым идеалом, называется двусторонним идеалом или просто идеалом полукольца S.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--