Курсовая работа: Световое излучение в ультрафиолетовой, видимой и инфракрасной областях спектра
Помимо интенсивности КЛ-эмиссия характеризуется спектральным составом излучения. Энергия фотонов и, таким образом, спектр КЛ-излучения содержат сведения о характеристических энергетических уровнях, имеющихся в объекте. Излучательные переходы можно разделить на два класса: собственные (фундаментальные) и примесные. К собственным переходам относятся переходы зона-зона с выделением фотона с энергией, равной Eg , где Eg - ширина запрещенной зоны, и рекомбинация свободного экситона с выделением фотона с энергией
hv=Eg - Ex ,
где Ex — энергия ионизации экситона. В не прямозонных полупроводниках, таких как, например, GaP, фундаментальное излучение очень слабое, поскольку в отличие от прямозонных полупроводников, таких как GaAs, при рекомбинации электрона и дырки обязательно должно происходить образование фонона, а появление дополнительной частицы резко уменьшает вероятность процесса (рис. 5). Поэтому собственное излучение в не прямозонных полупроводниках относительно слабое, особенно в сравнении с излучением, связанным с примесями и дефектами.
К примесным переходам относятся переходы через уровни, расположенные внутри запрещенной зоны, которые возникают за счет присутствия в материале атомов различных примесей, в том числе доноров и акцепторов, или структурных дефектов и могут быть мелкими, расположенными у краев зон, или глубокими, расположенными ближе к середине запрещенной зоны. Рекомбинанионной эмиссии с первых соответствуют фотоны с энергией близкой к Eg , рекомбинационной эмиссии со вторых — фотоны с энергией существенно меньшей, чем Eg . При комнатной температуре такое излучение может быть сделано гораздо более интенсивным, чем собственное, даже в прямозонных материалах. Такие примеси, активирующие люминесценцию, называют активаторами, и этим часто пользуются в терминологии, связанной с люминофорами. В присутствии примесей могут образовываться связанные на них экситоны, при рекомбинации которых возникают фотоны с энергией
,
где — энергия связи экситона с примесным атомом, — энергия эмиттируемых фононов и m — число фононов. В реальных материалах доминирующим излучением является излучение за счет примесных переходов через уровни примесей и дефектов.
2. Пространственное разрешение катодолюминесцентной микроскопии
Помимо основных спектроскопических характеристик системы анализа светового излучения, таких как полная спектральная передаточная характеристика системы, спектральное разрешение и предельная чувствительность, установка для исследования микро катодолюминесценции характеризуется еще одним очень важным параметром, а именно, величиной пространственного разрешения или локальностью сбора информации, т.е. минимальным расстоянием между двумя деталями объекта, которые можно различить по сигналу КЛ-эмиссии.
Разрешение в катодолюминесцентном режиме РЭМ зависит не столько от размера сечения первичного электронного пучка на объекте, сколько от размера области генерации электронно-дырочных пар с последующей их диффузией. В материалах с большим квантовым выходом размер реальной области генерации пар может существенно превышать размеры первоначальной области генерации пар под действием электронов пучка за счет фотонного переноса — явления возбуждения неравновесных носителей заряда за счет перепоглощения и переизлучения собственного рекомбинационного излучения, когда в результате акта излучение — поглощение электронно-дырочная пара «перемещается» в объекте на пролетаемое фотоном расстояние. В отсутствие явления переизлучения область генерации пар практически совпадает с областью диссипации энергии первичных электронов, и дальнейшее перемещение пар происходит за счет диффузии. При значительной диффузионной длине размер области инжектированных носителей может существенно превышать размер сечения первичного электронного пучка на объекте.
Из-за малости сигнала КЛ, особенно у материалов с малым внутренним квантовым выходом, для работы в режиме локальной КЛ используют повышенные (10-6 — 10-8 А) токи электронного зонда. Это приводит к уширению электронного пучка на объекте и вносит дополнительную лепту в ухудшение пространственного разрешения. Пространственное разрешение в этом режиме можно выразить как геометрическую сумму поперечного размера электронного зонда на объекте, поперечного размера области рассеивания энергии электронов зонда, которая полагался равной глубине проникновения электронов в объект Re , — и диффузионной длины неосновных носителей заряда L. Такая оценка давала завышенное значение пространственного разрешения, а на практике реализовывалось гораздо более высокое значение разрешения. Например, для n-GaPс L=3,5 мкм при 20 кВ реально было получено разрешение в 1.5 мкм вместо 6 мкм, получаемых при расчете методом геометрической суммы.
Позже была построена формальная теория пространственного разрешения в режиме локальной КЛ, основанная на критерии разрешения двух точек в просвечивающей электронной микроскопии, где провал между двумя максимумами на изображении еще разрешаемых двух точек достигает 25%. Для локальной КЛ под разрешением понималось минимальное расстояние между двумя тонкими люминесцирующими слоями в не люминесцирующей матрице, когда при сканировании пучка поперек слоев в сигнале КЛ (отклике) провал посередине изображения этих слоев достигал 25 %.
Оказалось, что определяемая таким образом величина пространственного разрешения очень близка к значению полуширины отклика сигнала КЛ на тонкий люминесцирующий слой в объекте, т.е. ширины отклика на уровне 0,5 от максимального значения сигнала, достигаемого при нахождении электронного зонда непосредственно на люминесцирующем слое. При теоретическом расчете отдельно учитывался вклад рассеяния первичных электронов в объекте (конечного размера области генерации пар в объекте) в пренебрежении диффузией пар и вклад диффузии пар в пренебрежении размерами области генерации пар, которая в этом случае считалась точечной. Из-за малости вклада, обусловленного конечными размерами электронного зонда на объекте, влиянием этого фактора пренебрегалось.
При учете лишь конечных размеров реальной области генерации пар диффузионная длина Lполагалась равной нулю. Отклик сигнала КЛ при сканировании поперек тонкого люминесцирующего слоя содержит узкую центральную часть с повышенным значением сигнала, полуширина которой и определяет величину пространственного разрешения (рис. 6).
Рассчитанные методом Монте-Карло нормированные отклики сигнала КЛ ICL (x) при сканировании поперек тонкого люминесцирующего слоя в матрице GaAs для разных ускоряющих напряжений: 1-10, 2-20, 3-30, 4-40 и 5-50 кВ при отсутствии диффузии неравновесных носителей заряда.
В данном случае это является вкладом в пространственное разрешение за счет рассеяния первичных электронов в объекте и зависит от ускоряющего напряжения микроскопа, как показано на рис. 7 (зависимость полуширины δ распределения ICL (x) от ускоряющего напряжения для различных полупроводниковых материалов в отсутствие диффузии неравновесных носителей заряда: 1-Si, 2-GaP, 3-PbS и GaAs)для различных материалов объекта, причем вид этой зависимости различен для материалов с разными атомными номерами, что является следствием различия в процессах рассеяния в объекте электронов пучка: в легких материалах (Si) преобладают мало угловые неупругие рассеяния, в тяжелых (PbS, GaAs) — упругие рассеяния на большие углы.
Получаемое при таких расчетах значение пространственного разрешения можно рассматривать как предельно достигаемое разрешение, реализуемое либо на материалах с малыми по сравнению с размерами области генерации пар диффузионными длинами, либо при работе микроскопа в импульсном режиме с регистрацией сигнала КЛ лишь в начальный момент возбуждающего электронного воздействия, пока не произошло существенного диффузионного расплывания неравновесных носителей заряда.
Происходящее в этом случае "улучшение" пространственного разрешения по сравнению со стационарным случаем, естественно, тем более заметно, чем больше значение диффузионной длины (при этом следует учитывать необходимое увеличение времени накопления сигнала при регистрации из-за существенного уменьшения его интенсивности).
Позже был предложен новый метод экспериментальной оценки размера области генерации электронно-дырочных пар. Для этого они использовали структуру из AlAs/GaAs с тремя квантовыми ямами, поперек которых проводилось сканирование и регистрировался отклик сигнала КЛ. В таком образце исключался эффект диффузии носителей заряда и повышалось разрешение до 50 нм. Полученные авторами отклики был и похожи на отклики, представленные на рис. 6.
Расчет аналогичного отклика сигнала КЛ для точечного источника генерации пар с учетом диффузии (L ≠ 0) показал зависимость полуширины распределения от скорости поверхностной рекомбинации, которая с приближением источника к поверхности объекта становилась все более выраженной (рис. 8). На рис. 8 изображена зависимость полуширины δ* =δ/L распределения ICL (x) от приведенной скорости поверхностной рекомбинации S=𝜐s τ/L для различных значений приведенной глубины залегания точечного источника Z0 =z0 /L: 1-Z=0; 2 - 0.05; 3 - 0.1; 4 - 0.2; 5 - 0.3; 6 - 0.5; 7 - 1.0 и 8 - 2.0.
Наличие поверхностной рекомбинации приводит к оттоку носителей на поверхность и к последующей там безызлучательной их рекомбинации, за счет чего уменьшаются диффузионное "расплывание" носителей и полуширина распределения сигнала КЛ, при этом также происходит снижение интенсивности и самого сигнала КЛ. Это "обужение" кривой отклика сигнала КЛ за счет наличия поверхностной рекомбинации для массивного объекта в приближении точечного источника генерации пар может достигать семи крат. Наличие поверхностной рекомбинации приводит к тому, что в приповерхностных слоях объекта время жизни неосновных носителей отличается от его значения в глубине объема τbulk и приобретает некоторое эффективное значение:
,
где τs — время жизни за счет рекомбинации па поверхности. Роль поверхностной рекомбинации существенно возрастает при работе с тонкими объектами. Здесь уже нужно принимать во внимание действие двух поверхностей, ограничивающих объект сверху и снизу. В этом случае даже при отсутствии рекомбинации в объеме
,
где tявляется толщиной образца, и если даже отсутствует рекомбинация в объеме, т.е. τbulk =∞, то время жизни будет определяться лишь присутствием поверхностей, чему будет соответствовать диффузионная длина, равная
.