Курсовая работа: Сжатие данных методами Хафмана и Шеннона-Фано

Аналогично применению алгоритма Шеннона-Фано, нужно построить бинарное дерево, которое также будет префиксным деревом, где все данные хранятся в листьях. Но в отличие от алгоритма Шеннона-Фано, который является нисходящим, на этот раз построение будет выполняться снизу вверх. Вначале мы выполняем просмотр входных данных, подсчитывая количество появлений значений каждого байта, как это делалось и при использовании алгоритма Шеннона-Фано. Как только эта таблица частоты появления символов будет создана, можно приступить к построению дерева.

Будем считать эти пары символ-количество "пулом" узлов будущего дерева Хаффмана. Удалим из этого пула два узла с наименьшими значениями количества появлений. Присоединим их к новому родительскому узлу и установим значение счетчика родительского узла равным сумме счетчиков его двух дочерних узлов. Поместим родительский узел обратно в пул. Продолжим этот процесс удаления двух узлов и добавления вместо них одного родительского узла до тех пор, пока в пуле не останется только один узел. На этом этапе можно удалить из пула один узел. Он является корневым узлом дерева Хаффмана.

Описанный процесс не очень нагляден, поэтому создадим дерево Хаффмана для предложения "How much wood could a woodchuck chuck?" Мы уже вычислили количество появлений символов этого предложения и представили их в виде таблицы 11.1, поэтому теперь к ней потребуется применить описанный алгоритм с целью построения полного дерева Хаффмана. Выберем два узла с наименьшими значениями. Существует несколько узлов, из которых можно выбрать, но мы выберем узлы "m" и "?". Для обоих этих узлов число появлений символов равно 1. Создадим родительский узел, значение счетчика которого равно 2, и присоединим к нему два выбранных узла в качестве дочерних. Поместим родительский узел обратно в пул. Повторим цикл с самого начала. На этот раз мы выбираем узлы "a" и "1", объединяем их в мини-дерево и помещаем родительский узел (значение счетчика которого снова равно 2) обратно в пул. Снова повторим цикл. На этот раз в нашем распоряжении имеется единственный узел, значение счетчика которого равно 1 (узел "H") и три узла со значениями счетчиков, равными 2 (узел "к" и два родительских узла, которые были добавлены перед этим). Выберем узел "к", присоединим его к узлу "Н" и снова добавим в пул родительский узел, значение счетчика которого равно 3. Затем выберем два родительских узла со значениями счетчиков, равными 2, присоединим их к новому родительскому узлу со значением счетчика, равным 4, и добавим этот родительский узел в пул. Несколько первых шагов построения дерева Хаффмана и результирующее дерево показаны на рис. 1.2.

Используя это дерево точно так же, как и дерево, созданное для кодирования Шенона-Фано, можно вычислить код для каждого из символов в исходном предложении и построить таблицу 11.5.

Следует обратить внимание на то, что таблица кодов - не единственная возможная. Каждый раз, когда имеется три или больше узлов, из числа которых нужно выбрать два, существуют альтернативные варианты результирующего дерева и, следовательно, результирующих кодов. Но на практике все эти возможные варианты деревьев и кодов будут обеспечивать максимальное сжатие. Все они эквивалентны.

Повторим снова, что, как и при применении алгоритма Шеннона-Фано, необходимо каким-то образом сжать дерево и включить его в состав сжатых данных.

Восстановление выполняется совершенно так же, как при использовании кодирования Шеннона-Фано: необходимо восстановить дерево из данных, хранящихся в сжатом потоке, и затем воспользоваться им для считывания сжатого потока битов.

Листинг программы осуществляющей сжатие данных методом Хаффмана приведён в приложении 2.

На рис.2.1. Показан вид окна работающей программы.

Рис.2.1 Вид окна работающей программы

Выводы

В задании к курсовой работе была задана проверка работы программы по сжатию файлов формата .bmp и .xls. Сжав файлы этих форматов получил следующие результаты. Для .bmp формата рисунок 2.2. Для .xsl формата рисунок 2.3. Отсюда можно сделать вывод, что используя метод Хаффмана можно достичь большего коэффициента сжатия, чем по методу Шеннона. Для файлов типа .bmp коэффициент сжатия выше чем для .xls.

Рис.2.2. Результаты по сжатию одного и того же .bmp файла

Рис.2.2 Результаты по сжатию одного и того же .xls файла

Литература

1. Фундаментальные алгоритмы с структуры данных в Delphi: Пер. с англ. /Джулиан М. Бакнел. – СПб: ООО «ДиаСофтЮП», 2003.- 560 с.

2. Искусство дизассемблирования К.Касперски Е.Рокко, БХВ-Петербург 2008. -780 с.

3. Win32 API. Эффективная разработка приложений. – СПб.: Питер, 2007 – 572 с.: ил.

4. Жоголев Е.А. Ж.78 Технология программирования. – М., Научный Мир, 2004, 216 с.

5. Фундаментальные алгоритмы на C++. Анализ/Структуры данных/Сортировка/Поиск: Пер. с англ./Роберт Седжвик. - К.: Издательство «ДиаСофт», 2001.- 688 с.

6. Искусство программирования на Ассемблере. Лекции и упражнения: Голубь Н.Г. – 2-е изд., испр. и доп. – СПб: ООО «ДиаСофтЮП». 2002. – 656 с.

Приложение 1

Реализация на Delphi алгоритма сжатия Шеннона

Листинг программы с комментариями

unit Shannon;

К-во Просмотров: 742
Бесплатно скачать Курсовая работа: Сжатие данных методами Хафмана и Шеннона-Фано