Курсовая работа: Сжатие речи на основе алгоритма векторного квантования

В простейшем случае, если вектор представляет собой блок отсчетов речевого сигнала, рассмотренная схема квантования является обобщением импульсной кодовой модуляции (ИКМ), и называется векторной ИКМ. В векторной ИКМ (ВИКМ) число битов, приходящихся один отсчет речевого сигнала определяется по формуле

(2.4)

ВИКМ имеет преимущество перед различными видами ИКМ [ 1 ], если .

Процесс проектирования кодовой книги, который связан с обучением, может быть реализован двумя способами. В первом случае кодовая книга разрабатывается на основе алгоритма К-средних. Рекомендуется, чтобы обучающая выборка содержала по 40 примеров векторов признаков для каждого кодового вектора. Вычислительную сложность разработки кодовой книги можно снизить, если определенным образом структурировать кодовую книгу. Действительно, так как в процессе построения кодовой книги выполняется поиск среди L векторов-эталонов, то упорядочение книги может привести к сокращению времени поиска. Для ускорения поиска часто применяют бинарные деревья [2]. Сложность вычислений можно уменьшить, если в кодовой книге отдельно хранить нормализованные векторы и масштабный коэффициент G (коэффициент усиления).

Во втором случае кодовая книга создается с помощью алгоритма обучения, в соответствии с которым положение центроидов на каждом шаге уточняется по рекуррентной формуле

, (2.5)

где t – номер шага; α - коэффициент обучения, α ~.Формула уточняет положение только того центроида, для которого входной вектор оказался ближайшим.

Выражение (2.5) соответствует правилу обучения состязательных нейронных сетей, в частности, правилу Кохонена. Подробнее см. в [2].

Существует различные схемы сжатия речи c помощью алгоритмов векторного квантования. Большинство из них основано на схеме “анализ-синтез”. Применяют два варианта таких схем – без обратной связи и с обратной связью [1]. В основе каждой из схем лежит модель синтеза речи на основе коэффициентов линейного предсказания [1]. В соответствии с этой моделью речь может быть получена путем подачи специальным образом подобранного возбуждающего сигнала на вход линейного фильтра, который моделирует резонансные частоты голосового тракта. Передаточная функция фильтра описывается уравнением

(2.6)

где G - коэффициент усиления, ai - коэффициенты линейного предсказания, P - порядок предсказателя.

Возможная структурная схема системы низкоскоростного кодирования речи с помощью алгоритмов векторного квантования изображена на рисунке 2.2.



Рисунок 2.4 – Низкоскоростное кодирование речи

Процедура кодирования речи сводится к следующему:

- оцифрованный речевой сигнал s [n ] нарезается на сегменты длительностью 20 мс (при fg =8 КГц в каждом сегменте будет по 160 выборок);

- для каждого сегмента вычисляются с помощью устройства оценивания (УО) параметры фильтра линейного предсказания и определяется ошибка предсказания d [n ], соответствующая функции возбуждения;

- функция возбуждения и параметры фильтра линейного предсказания кодируются с помощью отдельных векторных квантователей и передаются в канал.

Процедура декодирования заключается в пропускании восстановленного сигнала возбуждения через синтезирующий фильтр (2.4), параметры которого переданы одновременно с функцией возбуждения.

Приведенное описание процессов кодирования и декодирования речи не является исчерпывающим, оно объясняет лишь принцип действия кодера. Практические схемы намного сложнее, и это связано в основном со следующими двумя моментами.

Во-первых, на рисунке 2.2 изображена схема без обратной связи. Лучшего качества синтезируемой речи можно добиться в схемах с обратной связью [1]. Однако такие схемы сложнее.

Во-вторых, описанная выше схема, использует кратковременное предсказание и не обеспечивает в достаточной степени устранения избыточной речи. Поэтому в дополнение к кратковременному предсказанию используется еще и долговременное предсказание [1]. Выходной сигнал фильтра кратковременного предсказания используется для оценивания параметров фильтра долговременного предсказания – задержки τ и коэффициента предсказания a :

При оценке качества кодирования и сопоставлении различных кодеров оцениваются разборчивость речи и качество синтеза речи (качество звучания). Для оценки разборчивости речи используется метод ДРТ (диагностический рифмованный текст). В этом методе подбираются пары близких по звучанию слов, отличающиеся отдельными согласными (“кол-гол-пол”), которые многократно произносятся рядом дикторов, и по результатам испытаний оценивается доля искажений [3,4].

Для оценки качества звучания используется критерий ДМП (диагностическая мера приемлемости) [4]. Испытания заключаются в чтении несколькими дикторами, мужчинами и женщинами, ряда специально подобранных фраз, которые прослушиваются на выходе тракта связи рядом экспертов-слушателей, выставляющих свои оценки по 5-балльной шкале. Результатом является средняя оценка мнений (MOS).

Обратим внимание на следующий факт. Если кодовая книга создается на обучающих данных, принадлежащих только одному диктору, тоне следует ожидать, что она будет обеспечивать хорошее качество звучания для другого диктора. Соответственно, кодовая книга, полученная в лабораторных условиях, не обеспечит того же качества звучания при записи речи в шумовой обстановке, например, в салоне автомобиля. Для построения дикторо-независимой системы необходимо проектировать кодовую книгу на речевых сигналах различных дикторов.


3 ОПИСАНИЕ ВЫБРАННОГО МЕТОДА СЖАТИЯ

Разработанные за последние 20 лет методы кодирования обеспечивают хорошее качество (разборчивость, натуральность звучания, повышенную возможность опознавания говорящего) при передаче речи в цифровой форме по узкополосным каналам связи. На практике широкое применение нашли кодеры с линейным предсказанием при многоимпульсном возбуждении и при возбуждении от кода.

Наиболее совершенным алгоритмом (с точки зрения качества) является алгоритм с векторным квантованием.

Рисунок 3.1 – Структурная схема кодирования

К-во Просмотров: 226
Бесплатно скачать Курсовая работа: Сжатие речи на основе алгоритма векторного квантования