Курсовая работа: Техническое обслуживание и ремонт трансформаторов
Введение
Одним из важнейших преимуществ переменного тока перед постоянным является легкость и простота, с которой можно преобразовать переменный ток одного напряжения в переменный ток другого напряжения. Достигается это посредством простого и остроумного устройства – трансформатора, созданного в 1876 г. замечательным русским ученым Павлом Николаевичем Яблочковым.
П.Н. Яблочков предложил способ “дробления света” для своих свечей при помощи трансформатора. В дальнейшем конструкцию трансформаторов разрабатывал другой русский изобретатель И.Ф. Усагин, который предложил применять трансформаторы для питания не только свечей Яблочкова, но и других приемников.
Важная роль в развитии электротехники принадлежит М.О. Доливо-Добровольскому. Он разработал основы теории многофазных и, в частности, трехфазных переменных токов и создал первые трехфазные электрические машины и трансформаторы. Трехфазный трансформатор современной формы с параллельными стержнями, расположенными в одной плоскости, был сконструирован им в 1891 г. С тех пор происходило дальнейшее конструктивное усовершенствования трансформаторов, уменьшалась их масса и габариты, повышалась экономичность. Основные положения теории трансформаторов были разработаны в трудах Е. Арнольда и М. Видмара.
Цель выпускной работы заключается в изучении трансформаторов, их применения, ремонта и эксплуатации.
Глава 1. Общие сведения о трансформаторах
1.1 Назначение трансформаторов
Трансформатором называется статический электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения той же частоты. Трансформаторы позволяют значительно повысить напряжение, вырабатываемое источниками переменного тока, установленными на электрических станциях, и осуществить передачу электроэнергии на дальние расстояния при высоких напряжениях (110, 220, 500, 750 и 1150 кВ). Благодаря этому сильно уменьшаются потери энергии в проводах и обеспечивается возможность значительного уменьшения площади сечения проводов линий электропередачи.
В местах потребления электроэнергии высокое напряжение, подаваемое от высоковольтных линий электропередачи, снова понижается трансформаторами до сравнительно небольших значений (127, 220, 380 и 660 В), при которых работают электрические потребители, установленные на фабриках, заводах, в депо и жилых домах. На э. п. с. переменного тока трансформаторы применяют для уменьшения напряжения, подаваемого из контактной сети к тяговым двигателям и вспомогательным цепям.
Кроме трансформаторов, применяемых в системах передачи и распределения электроэнергии, промышленностью выпускаются трансформаторы: тяговые (для э. п. с), для выпрямительных установок, лабораторные с регулированием напряжения, для питания радиоаппаратуры и др. Все эти трансформаторы называют силовыми.
Трансформаторы используют также для включения электроизмерительных приборов в цепи высокого напряжения (их называют измерительными), для электросварки и других целей.
Рис. 1. Схема включения однофазного трансформатора
1.2 Устройство трансформаторов
Трансформаторы в зависимости от конфигурации магнитопровода подразделяют на стержневые, броневые и тороидальные.
В стержневом трансформаторе (рис. 2, а) обмотки 2 охватывают стержни магнитопровода 1; в броневом (рис. 2,б), наоборот, магнитопровод 1 охватывает частично обмотки 2 и как бы бронирует их; в тороидальном (рис. 2, в) обмотки 2 намотаны на магнитопровод 1 равномерно по всей окружности.
Рис. 2. Устройство стержневого (а), броневого (б) и тороидального (в) трансформаторов
Трансформаторы большой и средней мощности обычно выполняют стержневыми. Их конструкция более простая и позволяет легче осуществлять изоляцию и ремонт обмоток. Достоинством их являются также лучшие условия охлаждения, поэтому они требуют меньшего расхода обмоточных проводов. Однофазные трансформаторы малой мощности чаще всего выполняют броневыми и тороидальными, так как они имеют меньшую массу и стоимость по сравнению со стержневыми трансформаторами из-за меньшего числа катушек и упрощения процесса сборки и изготовления. Тяговые трансформаторы с регулированием напряжения на стороне низшего напряжения — стержневого типа, а с регулированием на стороне высшего напряжения — броневого типа.
Рис. 3. Магнитопроводы однофазного тягового (а) и силового трехфазного (б) трансформаторов: 1 — стержень; 2 — ярмовые балки; 3 — стяжные шпильки; 4 — основание для установки катушек; 5 — ярмо
Магнитопроводы трансформаторов (рис. 3) для уменьшения потерь от вихревых токов собирают из листов электротехнической стали толщиной 0,35 или 0,5 мм. Обычно применяют горячекатаную сталь с высоким содержанием кремния или холоднокатаную сталь. Листы изолируют один от другого тонкой бумагой или лаком. Стержни магнитопровода трансформатора средней мощности имеют квадратное или крестовидное сечение, а у более мощных трансформаторов — ступенчатое, по форме приближающееся к кругу (рис.4, а). При такой форме обеспечивается минимальный периметр стержня при заданной площади поперечного сечения, что позволяет уменьшить длину витков обмоток, а следовательно, и расход обмоточных проводов. В мощных трансформаторах между отдельными стальными пакетами из которых собираются стержни, устраивают каналы шириной 5—6 мм для циркуляции охлаждающего масла. Ярмо, соединяющее стержни, имеет обычно прямоугольное сечение, площадь которого на 10—15% больше площади сечения стержней. Это уменьшает нагрев стали и потери мощности в ней.
В силовых трансформаторах магнитопровод собирают из прямоугольных листов. Сочленение стержней и ярма обычно выполняют с взаимным перекрытием их листов внахлестку. Для этого листы в двух смежных слоях сердечника располагают, как показано на рис. 4, б, г, т. е. листы стержней 1, 3 и ярма 2, 4 каждого последующего слоя перекрывают стык в соответствующих листах предыдущего слоя, существенно уменьшая магнитное сопротивление в месте сочленения. Окончательную сборку магнитопровода осуществляют после установки катушек на стержни (рис. 4, в).
В трансформаторах малой мощности магнитопроводы собирают из штампованных листов П- и Ш-образной формы или из штампованных колец (рис. 5, а—в).
Рис. 4. Формы поперечного сечения (а) и последовательность сборки магнитопровода (б — г)
Большое распространение получили также магнитопроводы (рис. 5,г—ж), навитые из узкой ленты электротехнической стали (обычно из холоднокатаной стали) или из специальных железо-никелевых сплавов.
Рис. 5. Сердечники однофазных трансформаторов малой мощности, собранные из штампованных листов (о, б), колец (в) и стальной ленты (г—ж)
--> ЧИТАТЬ ПОЛНОСТЬЮ <--