Курсовая работа: Техническое обслуживание и ремонт трансформаторов
В трансформаторах броневого типа иногда применяют дисковые обмотки. По краям стержня устанавливают катушки, принадлежащие обмотке низшего напряжения. Отдельные катушки соединяют последовательно или параллельно. В трансформаторах э. п. с, у которых вторичная обмотка имеет ряд выводов для изменения напряжения, подаваемого к тяговым двигателям, на каждом стержне располагают по три концентрических обмотки (рис.6, в). Ближе к стержню размещают нерегулируемую часть 4 вторичной обмотки, в середине — первичную обмотку 5 высшего напряжения и поверх нее — регулируемую часть 6 вторичной обмотки. Размещение регулируемой части этой обмотки снаружи упрощает выполнение выводов от отдельных ее витков.
В трансформаторах малой мощности используют многослойные обмотки из провода круглого сечения с эмалевой или хлопчатобумажной изоляцией, который наматывают на каркас из электрокартона; между слоями проводов прокладывают изоляцию из специальной бумаги или ткани, пропитанной лаком.
Рис. 6. Расположение концентрических (а), дисковых (б) и концентрических трехслойных (в) обмоток трансформатора
Непрерывную спиральную обмотку используют в качестве первичной (высшего напряжения) и регулируемой части вторичной обмотки (низшего напряжения). Эта обмотка состоит из ряда последовательно соединенных плоских катушек, имеющих одинаковые размеры. Катушки расположены друг над другом. Между ними устанавливают прокладки и рейки из электрокартона, которые образуют горизонтальные и вертикальные каналы для прохода охлаждающей жидкости (масла).
Для повышения электрической прочности при воздействии атмосферных напряжений две первые и две последние катушки первичной (высоковольтной) обмотки обычно выполняют с усиленной изоляцией. Усиление изоляции ухудшает охлаждение, поэтому площадь сечения проводов этих катушек берут большей, чем для остальных катушек первичной обмотки.
Винтовую параллельную обмотку используют в качестве нерегулируемой части вторичной обмотки. Ее витки наматывают по винтовой линии в осевом направлении подобно резьбе винта. Обмотку выполняют из нескольких параллельных проводов прямоугольного сечения, прилегающих друг к другу в радиальном направлении. Между отдельными витками и группами проводов располагают каналы для прохода охлаждающей жидкости.
Рис. 7. Непрерывная спиральная (а) и винтовая (б) обмотки мощных трансформаторов электрического подвижного состава: 1 — выводы; 2,6 — каналы для прохода охлаждающей жидкости; 3 — катушки; 4 — опорные кольца; 5 — рейки; 7 — бакелитовый цилиндр; 8 — проводники обмотки
1.3 Принцип работы трансформаторов
Принцип работы трансформатора связан с принципом электромагнитной индукции. Ток поступающий на первичную обмотку создает в магнитопроводе магнитный поток.
Работа трансформатора основана на явлении электромагнитной индукции. На одну из обмоток, называемую первичной обмоткой подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток в магнитопроводе, сдвинутый по фазе, при синусоидальном токе, на 90° по отношению к току в первичной обмотке. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° по отношению к магнитному потоку. Когда вторичные обмотки ни к чему не подключены (режим холостого хода), ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток через первичную обмотку невелик, и определяется в основном её индуктивным сопротивлением. Напряжение индукции на вторичных обмотках в режиме холостого хода определяется отношением числа витков соответствующей обмотки w2 к числу витков первичной обмотки w1: U2=U1w2/w1.
При подключении вторичной обмотки к нагрузке, по ней начинает течь ток. Этот ток также создаёт магнитный поток в магнитопроводе, причём он направлен противоположно магнитному потоку, создаваемому первичной обмоткой. В результате, в первичной обмотке нарушается компенсация ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке, до тех пор, пока магнитный поток не достигнет практически прежнего значения. В этом режиме отношение токов первичной и вторичной обмотки равно обратному отношению числа витков обмоток (I1=I2w2/w1,) отношение напряжений в первом приближении также остаётся прежним.
Схематично, выше сказанное можно изобразить следующим образом:
U1 > I1 > I1w1 > Ф > ε2 > I2.
Магнитный поток в магнитопроводе трансформатора сдвинут по фазе по отношению к току в первичной обмотке на 90°. ЭДС во вторичной обмотке пропорциональна первой производной от магнитного потока. Для синусоидальных сигналов первой производной от синуса является косинус, сдвиг фазы между синусом и косинусом составляет 90°. В результате, при согласном включении обмоток, трансформатор сдвигает фазу приблизительно на 180°. При встречном включении обмоток прибавляется дополнительный сдвиг фазы на 180° и суммарный сдвиг фазы трансформатором составляет приблизительно 360°.
1.4 Опыт холостого хода
Для испытания трансформатора служит опыт холостого хода и опыт короткого замыкания.
При опыте холостого хода трансформатора его вторичная обмотка разомкнута и тока в этой обмотке нет (/2—0).
Если первичную обмотку трансформатора включить в сеть источника электрической энергии переменного тока, то в этой обмотке будет протекать ток холостого хода I0, который представляет собой малую величину по сравнению с номинальным током трансформатора. В трансформаторах больших мощностей ток холостого хода может достигать значений порядка 5— 10% номинального тока. В трансформаторах малых мощностей этот ток достигает значения 25—30% номинального тока. Ток холостого хода I0 создает магнитный поток в магнитопроводе трансформатора. Для возбуждения магнитного потока трансформатор потребляет реактивную мощность из сети. Что же касается активной мощности, потребляемой трансформатором при холостом ходе, то она расходуется на покрытие потерь мощности в магнитопроводе, обусловленных гистерезисом и вихревыми токами.
Так как реактивная мощность при холостом ходе трансформатора значительно больше активной мощности, то коэффициент мощности cos φ его весьма мал и обычно равен 0,2-0,3.
По данным опыта холостого хода трансформатора определяется сила тока холостого хода I0, потери в стали сердечника Рст и коэффициент трансформации К.
Силу тока холостого хода I0 измеряет амперметр, включенный в цепь первичной обмотки трансформатора.
При испытании трехфазного трансформатора определяется фазный ток холостого хода.
О потерях в стали сердечника Pст судят по показаниям ваттметра, включенного в цепь первичной обмотки трансформатора.
Коэффициент трансформации трансформатора равен отношению показаний вольтметров, включенных в цепь первичной и вторичной обмоток.
1.5 Схема трансформатора на холостом ходу
Рис. 8. – Схема однофазного трансформатора