Курсовая работа: Технологические методы лезвийной обработки резанием

Выразив угловую скорость ω через частоту вращения шпинделя станка, получим:

v = π nD (3)

При строгании и протягивании скорость резания v определяется скоро­стью перемещения строгального резца и протяжки в процессе резания отно­сительно заготовки.

При хонинговании и суперфинишировании скорость резания определя­ется с учетом осевого перемещения (см. рис. 1.4, е, ж )инструмента.

Скорость резания оказывает наибольшее влияние на производительность процесса, стойкость инструмента и качество обработанной поверхности.

Подача инструмента определяется ее скоростью vs . В технологических расчетах параметров режима при точении, сверлении, фрезеровании и шлифовании используется понятие подачи на один оборот заготовки So и выражается в мм/об. Подача на оборот численно соответству­ет перемещению инструмента за время одного оборота:

So = vs / n (4)

При строгании подача определяется на ход резца. При шлифовании по­дача может указываться на ход или двойной ход инструмента. Подача на зуб при фрезеровании определяется числом зубьев Z инструмента и подачей на оборот:

Sz = So / Z (5)

Глубина резания А определяется расстоянием по нормали от обработан­ной поверхности заготовки до обрабатываемой, мм. Глубину резания задают на каждый рабочий ход инструмента. При точении цилиндрической поверх­ности глубину резания определяют как полуразность диаметров до г: после обработки:

h = ( Dur - d) / 2 (6)

где d - диаметр обработанной поверхности заготовки, мм. Величина подачи и глубина резания определяют производительность про­цесса и оказывают большое влияние на качество обрабатываемой поверхности.

К технологическим параметрам процесса относятся геометрия режущего ин­струмента, силы резания, производительность обработки и стойкость инструмента.

Геометрические параметры режущего инструмента определяются углами, образуемыми пересечением поверхностей лезвия, а также положением поверхностей режущих лезвий относительно обрабаты­ваемой поверхности и направлением главного движения. Указанные пара­метры идентичны для различных видов инструмента, что позволяет рассмот­реть их на примере резца, используемого при точении.

Углы резца по передним и задним поверхностям измеряют в определен­ных координатных плоскостях. На рис. 1.5 а изображены координатные плоскости при точении, а на рис. 1.5, б углы резца в статике.

Главный передний угол γ— угол между передней поверхностью лезвия и плоскостью, перпендикулярной к плоскости резания; главный задний угол α – угол между задней поверхностью лезвия и плоскостью резания; угол заострения β – угол между передней и задней поверхностями. Из принципа построения углов следует, что

α + β + γ = π/2.

Угол наклона режущей кромки X — угол в плоскости резания между режущей кромкой и основной плоскостью.

Углы в плане: главный угол в плане φ – угол в основной плоскости ме­жду следом плоскости резания и направлением продольной подачи; вспомогательный угол в плане φ' – угол в основной плоскости между вспомога­тельной режущей кромкой и обработанной поверхностью.

Рис. 1.5. Геометрические параметры токарного резца:

а – координатные плоскости; б – углы резца в статике; 1 – плоскость резания Рп ; 2 – рабочая плоскость Р s ; 3 – главная несущая плоскость Р t ; 4 – основная плоскость Pv

Геометрические параметры режущего инструмента оказывают сущест­венное влияние на усилие резания, качество поверхности и износ инструмен­та. Так, с увеличением угла у инструмент легче врезается в материал, сни­жаются силы резания, улучшается качество поверхности, но повышается износ инструмента. Наличие угла а снижает трение инструмента о поверх­ность резания, уменьшая его износ, но чрезмерное его увеличение ослабляет режущую кромку, способствуя ее разрушению при ударных нагрузках.

Силы резания Р представляют собой силы, действующие на ре­жущий инструмент в процессе упругопластической деформации и разруше­ния срезаемой стружки.

Силы резания приводят к вершине лезвия или к точке режущей кромки и раскладывают по координатным осям прямоугольной системы координат xyz (рис. 1.6.). В этой системе координат ось z направлена по скорости глав­ного движения и ее положительное направление соответствует направлению действия обрабатываемого материала на инструмент. Ось у направлена по радиусу окружности главного движения вершины. Ее положительное на­правление также соответствует направлению действия металла на инстру­мент. Направление оси х выбирается из условия образования правой системы координат. Значение усилия резания определяется несколькими факторами. Оно растет с увеличением глубины h резания и скорости подачи s (сечения срезаемой стружки), скорости резания ν, снижением переднего угла γ режу­щего инструмента. Поэтому расчет усилия резания производится по эмпири­ческим формулам, установленным для каждого способа обработки (см. спра­вочники по обработке резанием). Например, для строгания эта формула имеет вид Р = С p hX p sY p Xn где коэффициенты Ср , Хр , Yp , n характеризуют материал заготовки, резца и вид обработки.

Мощность процесса резания определяется скалярным про­изведением:

N = Pve (7)

Выразив это произведение через проекции по коорди­натным осям, получим:

N = Pz vz + Py vy + Px vx (8)

К-во Просмотров: 377
Бесплатно скачать Курсовая работа: Технологические методы лезвийной обработки резанием