Курсовая работа: Технологія монтажу та ремонту машин постійного струму
,
тому що основний потік для ненасиченої машини пропорційний струму
.
Двигуни зі змішаним збудженням мають дві обмотки збудження, одну з яких увімкнено паралельно якорю, а другу – послідовно з ними. Послідовна обмотка збудження має небагато витків і може вмикатись узгоджено або зустрічно. У першому разі її електромагнітне поле підсилюватиме поле основної паралельної обмотки, а в другому – послаблюватиме.
Пускають двигун постійного струму з допомогою пускового реостата. Це пояснюється тим, що в момент пуску проти-ЕРС дорівнює нулю (), тому струм у якорі буде в 8-10 раз більший, ніж номінальний. Активний опір обмотки якоря малий (десяті або навіть соті частки ома).
За формулою струму якоря
.
При пуску , тому , тоді
.
Для обмеження пускового струму послідовно з якорем вмикають пусковий реостат , який у міру розгону двигуна поступово повністю виводиться. Пусковий струм визначається за формулою:
,
де – пусковий опір.
Щоб мати потрібний пусковий момент, опір пускового реостата вибирають таким, щоб пусковий струм був більший від номінального в 1,5 – 2,0 раза. Крім того, для збільшення пускового моменту і полегшешння пуску паралельну обмотку збудження вмикають на повну напругу мережі, для чого регулювальний реостат у колі паралельного збудження виводять повністю. Процес пуску двигуна з триступеневим пусковим реостатом показано на рис. 3.1.1.
Рис. 3.1.1. Електрична схема двигуна постійного струму з паралельним збудженням
Під дією пускового обертального моменту ротор двигуна почне обертатись і в якорі виникне проти-ЕРС. Тоді струм якоря визначають з формули електричної рівноваги :
.
При такому струмі якоря оберти двигуна збільшуватимуться доти, доки не зрівняються обертальний і гальмівний моменти (точка 1'). Потім виводять черговий ступінь пускового реостата, і струм якоря збільшується (точка 2), а отже, збільшується момент і кількість обертів (точка 2'). Так, поступово виводячи пусковий реостат, доводять оберти двигуна до номінальних (точка 3'). Струм в якорі при цьому дорівнюватиме:
.
3.2 Регулювання швидкості обертання та реверсування двигунів постійного струму
Регулювання швидкості обертання двигунів з паралельним збудженням.
Якщо в коло якоря ввімкнено регулювальний реостат , то швидкість обертання двигуна з паралельним збудженням визначають за формулою:
.
З формули видно, що швидкість обертання двигуна можна регулювати трьома способами: змінами опору кола якоря; магнітного потоку Ф (струму збудження); напруги U , підведеної до двигуна.
3.2.1 Регулювання швидкості обертання двигуна зміною опору кола якоря
Схему регулювання швидкості обертання двигуна показано на рис. 3.2.1.1, де пусковий реостат виконує функцію регулювального реостата. Обмотку збудження вмикають на повну напругу мережі, внаслідок чого утворюється сталий магнітний потік Ф .
Рис. 3.2.1.1. Електрична схема двигуна постійного струму з паралельним збудженням
Припустімо, що гальмівний момент на валу двигуна залишається сталим і не залежить від швидкості обертання. Якщо при цій умові зменшити опір регулювального реостата, то в перший момент швидкість обертання n внаслідок інерції не встигне змінитися. У зв’язку з цим не зміниться і проти-ЕРС, оскільки . Тоді струм якоря, що визначають за формулою , збільшується обернено пропорційно опору (). Внаслідок цього порушуєтсья рівновага між обертальним і гальмівним моментами (обертальний момент стає більшим за гальмівний момент). Швидкість обертання двигуна і його проти-ЕРС збільшується, а струм якоря зменшуватиметься доти, поки не досягне свого попереднього значення. Обертальний момент при цьому дорівнюватиме гальмівному моменту при новій більшій швидкості обертання. Якщо при сталих опорах у колі якоря збільшувати гальмівний момент, то швидкість обертання двигуна спадатиме. Цей спосіб дає можливість регулювати швидкість обертання двигуна в досить широких межах, але він невигідний через великі втрати в реостаті й зменшення ККД.
Якщо паралельно працюють кілька двигунів, наприклад, у трамваях, то швидкість їх обертання регулюють одночасно реостатом і зміною електричної схеми з’єднання двигунів. Заміннюючи послідовне з’єднання мішаним і потім паралельним, збільшують оберти двигунів. Усі перемикання виконують з допомогою спеціального перемикача – контролера.
3.2.2 Регулювання швидкості обертання двигуна зміною магнітного потоку