Курсовая работа: Технологія монтажу та ремонту машин постійного струму
При холостому ході криву при називають характеристикою холостого ходу двигуна. При великих значеннях струму збудження крива зменшується набагато (впливає насичення індуктора) і далі йде майже паралельно осі абсцис.
При певному навантаженні двигуна і сталій напрузі крива буде подібною, але розміщується трохи нижче.
3.2.3 Регулювання швидкості обертання зміни, підведеної до двигуна напруги
Напругу на затискачах двигуна регулюють зміною напруги генератора, що живить двигун. У цьому разі обмотка збудження двигуна живиться від окремого джерела (незалежне збудження).
Регулювання швидкості обертання двигуна з послідовним збудженням.
Швидкість обертання двигунів з послідовним і паралельним збудженням визначають за формулою:
.
Швидкість обертання двигуна послідовного збудження можна регулювати трьома способами: змінами опору кола якоря; магнітного потоку Ф статора; напруги U , підведеної до двигуна.
Регулювання швидкості обертання двигуна зміною опору кола якоря. Регулювання двигуна таким способом аналогічне регулюванню двигуна з паралельним збудженням. Здійснюється таке регулювання реостатом .
3.2.4 Регулювання швидкості обертання двигуна зміною магнітного потоку Ф
Магнітний потік в обмотці збудження двигуна змінюють шунтуючим реостатом . Якщо двигун має сталий гальмівний момент, незалежний від швидкості обертання, то при вимкненому рубильнику Р струм збудження дорівнюватиме струму якоря . При цьому обертальний електромагнітний момент визначиться за формулою: , а рівняння електричної рівноваги буде (пусковий реостат повністю виведений). Оскільки спад напруги дуже малий, то, нехтуючи ним, матимемо . Отже, при сталій напрузі на затискачах двигуна швидкість обертання n і магнітний потік Ф залежать один від одного. Якщо ввімкнено рубильник Р1 , то струм в обмотці якоря збільшується, внаслідок чого обертальний момент стане більшим, ніж гальмівний, і швидкість обертання двигуна збільшуватиметься.
Рис. 3.2.4.1. Схема реверсування двигуна постійного струму з паралельним збудженням
Процес зміни швидкості обяртання найбільш економічний і дає можливість плавно регулювати обертання двигуна.
Напрям дії обертального моменту двигуна можна змінити напрямом струму якоря І1 , або змінити напрям струму збудження. Схему реверсування двигуна з паралельним збудженням показано на схемі 3.2.4.1. Напрям струму в обмотці збудження змінюють перемикачем П .
3.3 Характеристика двигунів постійного струму
Властивості всіх електричних двигунів і, зокрема, постійного струму визначають за сукупністю трьох видів характеристик: пускових, робочих і регулювальних.
Пускові характеристики визначають властивості двигуна від моменту пуску до переходу його до усталеного режиму роботи. До цих характеристик належать пусковий струм , пусковий момент , час пуску і т.п.
Робочі характеристики визначають властивості двигуна при усталеному режимі роботи. До них належать залежність n , M , іпри . До робочих характеристик належить і механічна характеристика двигуна при і .
Регулювальні хаарктеристмики визначають властивості двигунів при регулюванні швидкості їх обертання. До них належать межі й характер регулювання (плавний чи ступінчастий), а також простота і надійність регулюючої апаратури.
Розглянемо робочі характеристики двигунів з паралельним і послідовним збудженням.
3.3.1 Робочі характеристики двигунів з паралельним збудженням
Робочі характеристики двигуна з паралельним збудженням показано на рисунку 3.3.1.1. Вони є виразом залежності швидкості обертання n від струму якоря , електромагнітного моменту М і ККД η від корисної потужності Р2 на валу двигуна при сталій номінальній напрузі на його затискачах і сталому струмі збудження , тобто n , M , і при і .
Рис. 3.3.1.1. Робочі характеристики двигуна з паралельним збудженням
Іноді розглядають залежність і від корисного моменту валу , або залежність і від струму в якорі .
Швидкісна характеристика .
При номінальній напрузі і відсутності навантаження (холостий хід) струм якоря буде незначним і визначиться ординатою ОА.
Збільшення навантаження на валу двигуна є збільшенням гальмівного моменту. При цьому оберти двигуна і проти-ЕРС повільно зменшуються. І з зменшенням проти-ЕРС струм якоря збільшиться, а це зумовить збільшення обертального моменту двигуна, оскільки він пропорційний струму.
Обертальний момент збільшуватиметься доти, поки не зрівняється з гальмівним моментом. При цьому встановлюється нова постійна швидкість обертання, яка відповідає новому навантаженню двигуна. У цьому полягає принцип саморегулювання двигунів. Зменшення швидкості обертання при навантаженні двигуна становить всього 5-10 % номінальних обертів. Це пояснюється тим, що магнітний потік, створений струмом обмотки збудження, при всіх навантаженнях залишається сталим Ф ~ , а результуючий магнітний потік із збільшенням навантаження трохи зменшується завдяки реакції якоря, що веде до збереження швидкості двигуна.
Залежність моменту і струму якоря від навантаження: М і . При сталих обертах корисний обертальний момент буде пропорційний корисній потужності й крива перетвориться в пряму. Із збільшенням навантаження швидкості обертання n зменшується, отже, щоб потужність Р2 була так само корисною, обертальному моменту М треба мати більше значення, ніж при . Тому крива із збільшенням навантаження відхиляється в бік більших значень.
Згідно з формули при струму якоря треба б змінюватися прямо пропорційно моменту, але потік Ф при збільшенні навантаження трохи зменшується внаслідок розмагнічуючої дії реакції якоря. Отже, для створення того самого моменту струму якоря треба мати більше значення, ніж при . Тому крива більше вигнута, ніж крива .