Курсовая работа: Технология получения полисахарида хитозана из хитина, выделяемого из панцирей ракообразных
Транс-расположение в элементарном звене макромолекулы хитина заместителей (ацетамидной и гидроксильной групп) у С2 и С3 обусловливает значительную гидролитическую устойчивость ацетамидных групп, в том числе и в условиях щелочного гидролиза. Поэтому отщепление ацетамидных групп удается осуществить лишь в сравнительно жестких условиях - при обработке 40-49% -ным водным раствором NaOH при температуре 110-1400С в течение 4-6 часов. Однако и в этих условиях степень деацетилирования (доля отщепившихся ацетамидных групп в расчете на одно элементарное звено) не достигает единицы, то есть не обеспечивается количественное удаление этих групп, составляя обычно 0,8-0,9 [3].
Реакция ДА сопровождается одновременным разрывом гликозидных связей полимера, т.е. уменьшением молекулярной массы, изменением надмолекулярной структуры, степени кристалличности и т.д. Таким образом, хитозан представляет собой полидисперсный по молекулярной массе полимер D-глюкозамина, содержащий 5-15% ацетамидных групп, а также до 1% групп, соединенных с аминокислотами и пептидами [5].
Процесс ДА проводят обычно с помощью концентрированных щелочей при повышенных температурах. Первым опытом получения хитозана, было сплавление хитина с твердой щелочью при 1800С. Этим способом получали продукт со степенью деацетилирования (СД) 95%, но значительно деструктированный (до 20 единиц).
Наиболее распространено ДА растворами щелочей 30-50% -ной концентраций, поскольку оно является более мягким. ДА в водных растворах щелочей может обеспечить 100% -ную степень деацетилирования при использовании ступенчатого процесса и значительно менее деструктурирует хитозан. При получении хитозана в указанных условиях одновременно с реакцией ДА идет деструкция хитина, т.е. разрыв его цепей по гликозидным связям, что приводит к уменьшению молекулярной массы хитозана и снижению его вязкости [1,6,7]. Высокая устойчивость хитина к ДА объясняется наличием водородной связи между карбонильной группой и азотом амидной группы смежных цепочек хитина в мицелярной структуре. Для разрушения этой, весьма прочной связи, процесс ведут при высокой температуре (100-1600С). С увеличением температуры даже при невысокой концентрации щелочи (30%) степень ДА достигает почти предельного значения (98%), однако при этом снижается молекулярная масса, а, следовательно, и вязкость растворов полученного хитозана. Для сохранения молекулярной массы полимера предпочтительно снижать температуру обработки хитина [6].
Как уже отмечалось, структура хитина представляет собой кристаллическую решетку, в связи, с чем степени растворимости и набухания хитина в различных средах довольно низки. Степень измельчения хитина перед ДА важна для получения однородного продукта. Измельчение хитина облегчает доступ деацетилирующего агента внутрь структуры, благодаря чему достигается равномерное протекание процесса ДА и сопровождающей его деструкции. При использовании слишком крупных частиц хитина процесс ДА проходит не в полной мере, поверхностные слои таких частиц деацетилированы в большей степени, чем внутренние. При растворении в уксусной кислоте эти поверхностные слои образуют раствор, а внутренние слои частиц не полностью деацетилированные, только набухают. Такой неоднородный по СД хитозан может иметь ограниченное применение. В случае достаточно тонкого измельчения хитина все слои частиц деацетилируются в одинаковой степени, что приводит к получению более однородного продукта.
Важную роль в снижении степени деструкции хитина играет среда, в которой проводят реакцию ДА, т.е. присутствие в ней кислорода. Разработан ряд способов удаления кислорода из сферы реакции. Самый простой из них - плотная укладка и подпрессовка смоченного щелочью хитина с последующим вытеснением из тары остатков воздуха азотом и ее герметизацией. Применяется также барботирование реакционной смеси азотом, пропускание азота над поверхностью суспензии и др. Во всех случаях при ДА хитина в инертной среде отмечается повышение молекулярной массы и вязкости хитозана без снижения СД в противовес данным, полученным при деацетилировании хитина на воздухе.
Важным фактором при ДА хитозана является перемешивание реакционной массы. Известны способы получения хитозана и в реакторах с перемешиванием и в емкостях из различных материалов (включая полимерные) без перемешивания. В случае применения перемешивания необходимо учитывать консистенцию реакционной массы, которая определяется соотношением жидкой и твердой фаз. Оптимальным можно считать массовое соотношение хитин: раствор щелочи 1: 5-1: 12 в зависимости от качества хитина, взятого для обработки. Такая суспензия хорошо перемешивается в реакторе и не требует лишнего объема щелочи. [8]
Известен способ получения хитозана путём обработки хитина 50% -ным раствором едкого натра при температуре 105 – 110оС в течение 40 – 60 мин. Однако жёсткие условия являются недостатком данного способа деацетилирования. [9]
Известен способ получения хитозана из панциря морского краба, включаящий активацию сухого или влажного хитина путём измельчения в коллоидной мельнице, деацетилирование, помывку готового продукта и частичное обезвоживание с последующей сушкой, измельчение и таблетирование. Данный способ требует дорогостоящего оборудования и сложен в обслуживании. [10]
Существует способ получения хитозана из ракообразных путём деацетилирования, включаящий приготовление 50% -ного раствора едкого натра, охлаждение его до температуры 18 – 22оС, внесение сухого хитина в соотношении хитин: раствор щёлочи 1: 10 – 1: 15 до образования однородной суспензии и выдерживание последней при комнатной температуре в течение 5-20 суток. Однако данный способ предусматривает использование щёлочи высокой концентрации, что приводит к значительному расходу щёлочи и частичной деструкции целевого продукта. [11]
Известен также способ получения хитозана из хитинсодержащего сырья, в частности панциря краба, заключающийся в измельчении исходного сырья до фракции 49 – 2000 мкм, обесцвечивании его с помощью 0,1 N раствора гипохлорита натрия, двукратной деминерализации 6-7% -ной соляной кислотой при температуре 15-35оС в течение 1 часа при перемешивании. Модуль ванны составляет 7-8. при этом добавляют небольшое количество бутанола в качестве антивспенивателя. По окончании процесса деминерализации кислоту сливают через ложное днище аппарата. Далее проводится две стадии депротеинирования, после каждой из них также производят сцеживание маточного раствора. При этом первая стадия осуществляется 15-20%-ным раствором гидроксида натрия при температуре 85-95 о С, а вторая 5-6%-ным раствором гидроксида натрия с целью снижения деструкции добавляют боргидрид натрия. Деацетилирование проводят 43-45% -ным раствором гидроксида натрия при первоначальной температуре 113-115оС, которая через 15-30 мин снижается до 105-108оС. После каждого процесса (ДМ, ДП, ДА) осуществляют промывку сырья водой до рН 6,5. недостатком данного способа является большое количество стадий, использование дополнительных реагентов, таких как гипохлорит и боргидрид натрия и бутанол, которые являются токсичными и дорогостоящими веществами. Кроме того, хитозан, полученный таким способом, обладает недостаточно высокой степенью деацетилирования, которая составляет 82%. [12]
Задачей предложенного способа получения хитозана являлось устранение недостатков описанных способов, упрощение технологии, снижение себестоимости конечного продукта и повышение его качества.
Это достигается тем, что в способе получения хитозана, включающем измельчение природного хитинсодержащего сырья, загрузку его в реактор, деминерализацию 6-7% раствором соляной кислоты, депротеинирование гидроксидом натрия при температуре 85-95оС, деацетилирование раствором гидроксида натрия при нагреве, обесцвечивание и промывку водой после каждой сади до рН 6,5, проводят загрузку хитинсодержащего сырья, измельчённого до получения фракции размером 0,5 – 6 мм, одновременно в несколько реакторов. Деминерализацию проводят потоком раствора соляной кислоты при 85-95оС в течение 1,5 ч с рН контролем на выходе каждого реактора до выравнивания концентрации кислоты на выходе каждого реактора с концентрацией исходной кислоты путём непрерывной её подачи, депротеинирование проводят потоком 6-7% гидроксида натрия в течение 1,5 ч, далее осуществляют выгрузку обработанного сырья в автоклав, где проводят деацетилирование одновременно с обесцвечиванием 50% раствором гидроксида натрия при 130-140 о С в атмосфере инертного газа азота и в присутствии 5% -ного раствора пероксида водорода в количестве 3-5% от общего объёма смеси.
Деацетилирование происходит под действием 50% -ного раствора гидроксида натрия в течение 1 - 2 ч. при температуре 130 – 140оС в атмосфере инертного газа азота, что делает возможным получение хитозана с высокой степенью деацетилирования и молекулярной массой благодаря предотвращению термоокислительной деструкции цепи полимера. Полученный хитозан промывают водой до рН 6,5 и сушат при температуре 60 – 70оС.
Таким образом, предлагаемый способ отличается меньшей стадийностью. Также способ отличается более высокой эффективностью процессов, меньшими трудо - и энергозатратами. Способ позволяет повысить степень деацетилирования до 87-91%, а также предусматривает использование более доступного и дешёвого, в регионах, удалённых от моря.
Сушка хитозана. Измельчение и хранение
После ДА и отмывки до нейтрального значения рН хитозан представляет собой сильно гидратированный, набухший продукт с содержанием воды более 70%. Для предотвращения ороговения хитозан сушат при 50-550С. При сушке в условиях более высоких температур хитозан уплотняется, темнеет и теряет растворимость, что снижает возможность его использования. Наилучшим образом показывает себя сушка хитозана в псевдокипящем слое при 500С. Низкомолекулярный водорастворимый хитозан и олигосахариды сушат на распылительных и лиофильных сушилках. Воздушно-сухой хитозан содержит 8-10% воды.
Для использования хитозана, например, в фармации и парафармации в качестве субстрата для таблетирования и капсулирования необходимо измельчить его до размера частиц 100 - 200 мкм. Хитозан, сохраняя кристаллическую структуру хитина, плохо поддается измельчению, и поэтому для получения порошкообразного продукта его измельчают последовательно резанием, истиранием и ударно-сдвиговой деформацией, применяя для этого соответственно дезинтеграторы, мельницы и шаровые мельницы. Наибольшую трудность при измельчении представляет плохо высушенный или ороговевший хитозан, так как в этом случае он обладает пластичностью и плохо поддается измельчению [5].
В ряде случаев преимущества перед порошкообразной формой имеет гранулированная форма полимера. Переработка хитозана в гранулы может быть осуществлена различным способами: распылительным высушиванием низковязких растворов полимера; гранулированием под давлением порошкообразного полимера, содержащего пластификатор; осаждением полимера в виде капель из высоковязкого раствора; формированием сферических микрокапель из раствора полимера путем его эмульгирования в подходящей дисперсионной среде [30]. Два последних способа наиболее актуальны, поскольку они обеспечивают наибольшую аморфизацию полимера и получение композитных гранул при условии введения в формовочный раствор модифицирующих добавок.
В процессе хранения хитозана на свету наблюдается его потемнение до коричневого цвета, снижение растворимости. Особенно это относится к тонко измельченному, а также распылительно высушенному хитозану. Хитозан представляет собой гигроскопичный материал, порошковый хитозан может слеживаться при хранении в помещениях с повышенной влажностью или при перепадах температур. Поэтому хитозан хранят герметично укупоренным в светонепроницаемой упаковке (банки, пакеты, мешки) в сухих закрытых помещениях при комнатной температуре [5].
Применение хитина и хитозана
Как уже указывалось, хитин и хитозан по своему строению близки к целлюлозе - одному из основных волокнообразующих природных полимеров. Естественно поэтому, что, как и целлюлоза, эти полимеры и их производные обладают волокно - и пленкообразующими [13-15] свойствами. Благодаря биосовместимости с тканями человека, низкой токсичности, способности усиливать регенеративные процессы при заживлении ран, биодеградируемости такие материалы представляют особый интерес для медицины.
При лечении гнойных и ожоговых ран широкое применение приобрели ферменты, эффективность использования которых может быть повышена за счет их включения в структуру волокон и губок. Такие полимеры, как хитин, хитозан, карбоксиметилхитин, благодаря широкому набору функциональных групп обеспечивают возможность образования между полимером-носителем и ферментом связей различной прочности, что создает предпосылки для регулирования активности и стабильности фермента, скорости его диффузии в рану [16,17,18].
В медицине для лечения и профилактики тромбозов используется природный антикоагулянт крови - гепарин, по химическому строению являющийся смешанным полисахаридом. Наиболее близкий его структурный аналог - сульфат хитозана также обладает антикоагулянтной активностью, возрастающей при увеличении степени сульфатирования [19]. Возможность реализации синергического эффекта (усиления активности гепарина при введении добавок сульфата хитозана) делает это соединение перспективным для создания лекарственных препаратов антикоагулянтного и антисклеротического действия.
N - и О-сульфатированные производные частично деацетилированного карбоксиметилхитина не только препятствуют свертыванию крови благодаря селективной адсорбции антитромбина, но и резко уменьшают интенсивность деления раковых клеток.
Еще одна возможность использования хитина, хитозана и их производных (карбоксиметилхитина, карбоксиметилхитозана, сукцинилхитозана) - создание биодеградируемых носителей фармацевтических препаратов (антибиотиков, антивирусных, противоопухолевых и антиаллергенных препаратов) в виде пленок (мембран). Применение таких пленок создает условия для выделения лекарственных средств, обеспечивая эффект пролонгирования их действия [20-26].
Одной из уникальных биологических активностей хитозана является его способность индуцировать устойчивость к вирусным заболеваниям у растений, ингибировать вирусные инфекции у животных и предотвращать развитие фаговых инфекций в зараженной культуре микроорганизмов [27,28].
Образование комплексов полимерными лигандами с различными металлами находит все более широкое применение в аналитической химии, хроматографии, биотехнологических процессах. Полимерные комплексообразователи, в том числе хитин, хитозан и их производные, например карбоксиметиловые эфиры, могут рассматриваться как реальная альтернатива традиционным методам очистки сточных вод промышленных предприятий от соединений металлов, используемых для нанесения защитных покрытий (никель, хром, цинк), а также от таких металлов, как ртуть и кадмий, способных аккумулироваться живыми организмами. Наличие электронодонорных амино - и гидроксильных групп, широкие возможности введения различных ионогенных групп кислотного и основного характера делают производные хитина и хитозана весьма перспективными для использования в хроматографии при разделении и очистке биологически активных соединений (нуклеиновых кислот и продуктов их гидролиза, стероидов, аминокислот) [29-31].
В фотографических процессах, связанных с быстрым проявлением изображения, используют такие важные характеристики хитозана, как его пленкообразующие свойства, поведение в системах, содержащих желатин и комплексы серебра, обеспечивающее отсутствие поперечной (в слоях пленки) диффузии красителя, оптические характеристики полимера.
Весьма перспективно использование хитозана в бумажной промышленности: благодаря большей прочности при водных обработках ионных связей, образующихся при нанесении хитозана на целлюлозное волокно при формировании бумаги, по сравнению с существующими в обычной бумаге водородными связями заметно возрастает прочность бумажного листа, особенно в мокром состоянии. При этом одновременно улучшаются и другие важные свойства (сопротивление продавливанию, излому, стабильность изображения) [32].
В последнее время все большее внимание уделяется исследованиям процессов образования, изучению свойств и возможностей практического применения особого класса продуктов химических превращений полимеров - интерполимерных комплексов. Эти соединения, образующиеся при взаимодействии макромолекул противоположно заряженных полиэлектролитов, характеризуются высокой гидрофильностью, что позволяет использовать их в качестве эффективных флокулянтов, структурообразователей, а в виде пленок в качестве полупроницаемых мембран и покрытий, в том числе в медицине [33,34].