Курсовая работа: Технология жидких кисломолочных продуктов и напитков

При производстве кисломолочных продуктов осуществляются как биохимические, так и физико-химические процессы

  • брожение мо­лочного сахара,
  • коагуляция казеина
  • гелеобразование.

БИОХИМИЧЕСКИЕ И ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ ПРИ ПРОИЗВОДСТВЕ КИСЛОМОЛОЧНЫХ ПРОДУКТОВ

Кисломолочные продукты играют важную роль в питании людей, осо­бенно детей, лиц пожилого возраста и больных. Диетические свойства кисломолочных продуктов заключаются прежде всего в том, что они улуч­шают обмен веществ, стимулируют выделение желудочного сока и воз­буждают аппетит. Наличие в их составе микроорганизмов, способных приживаться в кишечнике и подавлять гнилостную микрофлору, приво­дит к торможению гнилостных процессов и прекращению образования ядовитых продуктов распада белка, поступающих в кровь человека

БРОЖЕНИЕ МОЛОЧНОГО САХАРА

Важнейшим биохимическим процессом, протекающим при выработ­ке кисломолочных продуктов, является брожение молочного сахара, вы­зываемое микроорганизмами бактериальных заквасок. Его скорость и на­правление определяют консистенцию, вкус и запах готовых продуктов по характеру брожения молочного сахара кисломолочные продукты можно разделить на две группы. К первой группе относят продукты, в основе приготовления которых лежит главным образом молочнокислое брожение (простокваша, йогурт, ацидофилин, творог, сметана), ко вто­рой группе — продукты со смешанным брожением, при изготовлении которых происходит молочнокислое и спиртовое брожение (кефир, ку­мыс, ацидофильно-дрожжевое молоко).

При молочнокислом брожении каждая молекула пировиноградной кислоты, образующаяся из молекулы глюкозы, восстанавливается с уча­стием окислительно-восстановительного фермента лактатдегидрогена-1 до молочной кислоты:


В результате из одной молекулы лактозы образуются четыре молеку­лы молочной кислоты:


По нарастанию кислотности молока при молочнокислом брожении можно рассчитать, какое количество молочного сахара было сброжено. Например, кислотность молока увели­чилась на 60Т (кислотность свежего молока была 17°Т, после сбраживания молочного саха­ра — 77Т). 1˚Т соответствует I см3 0,1 н. раствора щелочи или 1 см30,1 н. раствора молоч­ной кислоты, что составляет 90/(10 1000) = 0,009 г молочной кислоты. Следовательно, 60Т будут соответствовать 600,009 — 0,54 г молочной кислоты.

Из суммарной реакции молочнокислого брожения следует, что из 1 моля молочного сахара образуется 4 моля молочной кислоты, т. е. из 342 г молочного сахара образуется 4-90 = 360 г молочной кислоты. Следовательно, для получения 0,54 г молочной кислоты потребовалось молочного сахара


Многие молочнокислые бактерии при сбраживании сахара кроме мо­лочной кислоты образуют ряд других химических веществ, придающих кисломолочным продуктам специфические вкус и аромат. К ним относят­ся летучие кислоты (уксусная, пропионовая и др.), карбонильные соеди­нения (диацетил, ацетоин, ацетальдегид), спирт и углекислый газ.

В зависимости от продуктов, накапливаемых в процессе брожения, все молочнокислые бактерии подразделяют на гомоферментативные и гетероферментативные. Молочнокислые бактерии (lac. lactis, Lac. cremoris, Lac. diacetilactis, Str. thermophilus, L. bulgaricus, L. acidophilus), образующие в ка­честве основного продукта брожения молочную кислоту, относят к гомо-ферментативным; бактерии (Leuc. cremoris, Leuc. dextranicum и др.), кото­рые кроме молочной кислоты в значительных количествах образуют и дру­гие продукты брожения, — к гетероферментативным.

Путем определенного комбинирования различных видов молочнокис­лых бактерий и регулирования температуры сквашивания можно полу­чить продукт с нужными вкусовыми, ароматическими достоинствами, консистенцией и диетическими свойствами.

В кисломолочных продуктах со смешанным брожением (кефир, ку­мыс и др.) наряду с молочной кислотой образуется большое количество этилового спирта и углекислого газа. Возбудителем спиртового броже­ния в этих продуктах являются дрожжи. При спиртовом брожении пиро­виноградная кислота под действием фермента пируватдекарбоксилазы, катализирующего отщепление углекислого газа, расщепляется на уксус­ный альдегид и углекислый газ:

Уксусный альдегид с участием окислительно-восстановительного фермента алкогольдегидрогеназы восстанавливается в этиловый спирт:


Суммарно спиртовое брожение лактозы можно представить в следу­ющем виде:


Способность дрожжей вырабатывать спирт и углекислый газ зависит от многих факторов: вида используемых дрожжей, количества молочного сахара в исходном сырье, температуры, рН среды и др.

КОАГУЛЯЦИЯ КАЗЕИНА И ГЕЛЕОБРАЗОВАНИЕ

Накопление молочной кислоты при молочнокислом брожении лактозы имеет существенное значение для образования белкового сгустка, определяющего консистенцию кисломолочных продуктов. Сущность кислотной коагуляции сводится к следующему. Образующаяся (или вне­сенная) молочная кислота снижает отрицательный заряд казеиновых мицелл, так как Н-ионы подавляют диссоциацию карбоксильных групп казеина, а также гидроксильных групп фосфорной кислоты. В результате с этого достигается равенство положительных и отрицательных зарядов и изоэлектрической точке казеина (рН 4,6—4,7).

При кислотной коагуляции помимо снижения отрицательного заря-ми казеина нарушается структура казеинаткальцийфосфатного комплекса (отщепляется фосфат кальция и структурообразующий и кальций). Так как кальций и фосфат кальция являются важными структурными элемента­ми комплекса, то их переход в раствор дополнительно дестабилизирует казеиновые мицеллы


При выработке творога кислотно-сычужным способом на казеин совместно действуют молочная кислота и внесенный сычужный фермент.

Под действием сычужного фермента ка­зеин превращается в параказеин, имею­щий изоэлектрическую точку в менее кис­лой среде (рН 5—5,2).

В изоэлектрической точке казеиновые или пара казеиновые частицы при столк­новении агрегируют, образуя цепочки или нити, а затем пространственную сетку, в ячейки или петли которой захватывается дисперсионная среда с жировыми шари­ками и другими составными частями мо­лока . Происходит гелеобразование. При производстве кисломолочных продуктов и сыра процесс гелеобразования можно условно разделить на четыре ста­дии: стадия скрытой коагуляции (индук­ционный период), стадия массовой коагу­ляции, стадия структурообразования (уп­лотнения сгустка) и стадия синерезиса.

В коллоидных системах на гелеобразование влияют концентрация дисперс­ной фазы, размер, форма частиц, темпе­ратура и т. д. Образующийся сгусток (гель) обладает определенными механическими свойствами: вязкостью, пластичностью, упругостью и прочностью. Эти свойства связаны со структурой системы, поэтому их называют структурно-механическими или реологическими.

Структурно-механические свойства сгустков определяются характе­ром связей, возникающих между белковыми частицами при формирова­нии структуры. Связи могут быть обратимыми и необратимыми. Обра­тимые (тиксотропно-обратимые) связи восстанавливаются после нарушения структуры сгустка. Они обусловливают явление тиксотропии (рис.1а) (( греч. thixis — прикосновение + trope — изменение) — способность струк­тур после их разрушения в результате какого-нибудь механического воздействия самопроизвольно восстанавливаться во времени.

Необратимые (необратимо разрушающиеся) связи не обладают свой­ством восстанавливаться после механического воздействия на сгусток. С ними связано явление синерезиса. Синерезис (рис.1б)— уплотнение, стягивание сгустка с укорачиванием нитей казеина и вытеснением заключенной меж­ду ними жидкости. Рис 2. Скорость синерезиса определяется влагоудерживающей способностью казеина и зависит от концентрации в сырье сухих веществ, состава бактериальных заквасок, режимов тепловой обработки гомогенизации, способа свертывании молока и других факторов.

Для кисломолочных напитков и сметаны синерезис — явление неже­лательное. Поэтому при их выработке используют бактериальные закваски нужного состава и технологический процесс ведут при режимах, предотвращающих возникновение синерезиса. При производстве творога наоборот, требуется удалить избыток сыворотки из сгустка. Поэтому выбирают такие режимы обработки молока, которые способствовали бы получению плотного, но легко отдающего сыворотку сгустка. Для усиле­нии синерезиса применяют также измельчение, нагревание сгустка и т. д.

Рис.1

Характер связей в структуре сгустка (продукта) можно определить путем измерения так называемой эффективной вязкости — вязкости, обусловленной образованием в продукте внутренних структур. При этом определяют и сравнивают между собой эффективную вязкость неразру­шенной η н, разрушенной ηр и восстановленной ηп структур (табл. 5)

Как видно из табл.5 , во время формирования сгустков простокваши и кисломолочных напитков в основном образуются необратимо разру­шающиеся (нетиксотропные связи). Тиксотропных связей, характеризу­ющихся самопроизвольным восстановлением после механического воз­действия, в них мало. Сметана характеризуется меньшей потерей вязко­сти при разрушении структуры и большим количеством тиксотропных связей по сравнению с кисломолочными напитками.

Таблица 5


К-во Просмотров: 594
Бесплатно скачать Курсовая работа: Технология жидких кисломолочных продуктов и напитков