Курсовая работа: Теорема Бернулли Закон распределения Пуассона Критерий Колмогорова
WriteLn(' n p*'); WriteLn; m := 0; w := 0;
For j := 1 To 18 Do Begin
For i := 1 To 1000 Do Begin
Inc(w);
Init_Condit;
If Gone Then Inc(m);
End; Fr := m / w;
WriteLn(w : 10, Fr:15:3);
End;
Repeat Until KeyPressed;
End.
Результаты программы:
Расчетная вероятность: 0.688
N,числоопытов |
p*,частота |
1000 | 0.675 |
2000 | 0.678 |
3000 | 0.676 |
4000 | 0.680 |
5000 | 0.681 |
6000 | 0.682 |
7000 | 0.684 |
8000 | 0.683 |
9000 | 0.683 |
10000 | 0.684 |
11000 | 0.685 |
12000 | 0.685 |
13000 | 0.685 |
14000 | 0.686 |
15000 | 0.687 |
16000 | 0.687 |
17000 | 0.687 |
18000 | 0.688 |
Проверка в ручную:
Первый способ:
Вывод: при большом числе опытов частота события приближается (точнее - сходится по вероятности) к вероятности этого события. Следовательно, можно сделать вывод, что теорема Бернулли верна.
Задание 2,3. Моделирование дискретной случайной величины, имеющей закон распределения Пуассона. Подтверждение гипотезы о том, что полученная случайная величина имеет данный закон распределения с помощью критерия Колмогорова.
Закон Пуассона
Рассмотрим случайную величину X, которая может принимать целые, неотрицательные значения:0,1,2,... ,m,...
Говорят, что эта СВ X распределена по закону Пуассона, если вероятность того, что она примет определенное значение т, выражается формулой:
(m=0,1,2...), а - некоторая положительная величина называемая параметром закона Пуассона. Ряд распределения СВ X, распределенный по закону Пуассона, имеетвид:
0 | 1 | 2 | … | m | … | |
(a/1!) | (а2 /2!) | … | (am /m!) | … |
Это распределение зависит от одного параметра а, на рисунке 1 показан вид распределения Пуассона при различных а.
Математическое ожидание данного распределения случайной величины равно параметру закона Пуассона а: ; Дисперсия также равна этому параметру: Dx =a. Таким образом дисперсия случайной величины, распределенной по закону Пуассона равна ее математическому ожиданию и равна параметру а.
Это свойство применяется на практике для решения вопроса, правдоподобна ли гипотеза о том, что случайная величина X, распределена по закону Пуассона, для этого определяют из опыта статистические характеристики: математическое ожидание и дисперсию. Если их значения близки, то гипотеза является правдоподобной.
Дискетной называется случайная величина возможные значения которой есть отдельные изолированные числа(т.е. между двумя возможными соседними значениями нет возможных значений), которые эта величина принимает с определенными вероятностями. Другими словами, возможные значения дискретной случайной величины можно перенумеровать. Число возможных значений дискретной случайной величины может быть конечным или бесконечным (в последнем случае множество всех возможных значений называют счетным).
Законом распределения называют перечень ее возможных значений и соответствующих им вероятностей. Текстпрограммы:
Program Puasson_Kolmagor;
Uses CRT, Graph;