Курсовая работа: Теоретичні основи спектральних методів аналізу

Ядерний магніт. резонанс

> 3 мкм

> 1·105

>40 мкДж/моль

ЯМР

Методи, пов'язані із взаємодією світлового випромінювання із суспензіями поділяють на:

турбідиметрію , що ґрунтується побудована на вимірюванні інтенсивності світла, яке поглинається незабарвленою суспензією;

нефелометрію , що ґрунтується на вимірюванні інтенсивності світла, яке відбивається або розсіюється забарвленою або незабарвленою суспензією.

Методи, що використовують явище поляризації молекул під дією світлового випромінювання, розділяють на:

рефрактометрію , що ґрунтується на вимірюванні показника заломлення;

поляриметрію , що ґрунтується на вимірюванні кута обертання площини поляризації поляризованого променя світла, що пройшов через оптично активне середовище;

інтерферометрію , що ґрунтується на вимірюванні зсуву інтерференції світлових променів при проходженні їх крізь кювети з розчином речовини.

Оптичні методи аналізу нерозривно пов'язані з використанням сучасних приладів різної складності, що підвищує вартість аналізу, але дає ряд переваг у порівнянні з класичними хімічними методами: експресність, нерухомість зразків, простоту методики, використання невеликих кількостей речовин для аналізу, можливість аналізувати сполуки будь-якої природи, проведення експрес-аналізу багатокомпонентних сумішей. Крім того, вони підвищують чутливість, точність і відтворюваність результатів кількісних визначень.

6 . Спостерігання та реєстрація спектроскопічних сигналів

Спектральні сигнали спостерігають та реєструють за допомогою спектральних пристроїв.

Сигнали, що виникають при поглинанні чи випусканні видимого випромінювання, можна спостерігати візуально, наприклад, жовте світло, що випускається збудженими атомами натрію в полум’ї, або світіння солей урану після опромінення їх УФ-світлом. Візуальні способи спостереження сигналу мають обмежене застосування, їх використовують для якісного знаходження деяких елементів та їх напівкількісного визначення в польових умовах. Для спостереження всього діапазону електромагнітного випромінювання ці способи непридатні.

Спектральні пристрої різноманітні, проте всі вони мають декілька загальних основних вузлів: джерело випромінювання, пристрій для виділення пучка фотонів з однаковою частотою, відділення для установки досліджуваного зразка, приймач випромінювання (детектор), перетворювач сигналу. Окрім цього, кожен спектральний прилад має лінзи, дзеркала, щілини та інші оптичні деталі; багато приладів мають електронні пристрої та комп’ютери. Опишемо деякі загальні деталі, що входять практично в кожен спектральний прибор, а саме пристрої для отримання монохроматичного випромінювання та приймачі випромінювання.

Монохроматизація випромінювання. В ідеальному випадку для отримання аналітичного сигналу від одного єдиного переходу потрібно опромінити речовину монохроматичним потоком (в абсорбційних методах) або затримати випромінювання всіх випускаючих частот, окрім потрібного (в емісійних методах).

На практиці світлові потоки поліхроматичні, тобто складаються з випромінювання багатьох довжин хвиль. Вилучити абсолютно монохроматичне випромінювання неможливо. Отримують потік випромінювання більш чи менш вузького інтервалу довжин хвиль, що досягається бездисперсійними (за допомогою світлофільтрів) або дисперсійними (за допомогою монохроматорів) способами.

Світлофільтри бувають абсорбційними та інтерференційними.

Абсорбційний світлофільтр – це кольорове скло, що пропускає випромінювання обмеженого (20–40 нм) інтервалу довжин хвиль та поглинає випромінювання всіх інших. Кожен світлофільтр характеризується певною кривою пропускання. Довжину хвилі, при якій пропускання максимальне, називають ефективною довжиною хвилі та вказують в паспорті світлофільтра. Інша характеристика світлофільтра – на півширина пропускання, тобто інтервал довжин хвиль при пропусканні, рівному половині максимального.

Замість забарвлених стекол можна використовувати дві скляні пластинки, між якими наливають розчин забарвленої сполуки.

Більш вузьку смугу пропускання (до кількох нанометрів) отримують за допомогою інтерференційного світлофільтра, більш складного за своєю будовою.

Монохроматор складається з диспергуючого елементу, вхідної та вихідної щілин та деяких оптичних елементів. Диспергуючими елементами є призми та дифракційні решітки.

Розкладання світла призмою базується на його заломленні на межі поділу двох матеріалів, наприклад повітря та кварцу або повітря та скла. Випромінювання від джерела фокусується на вхідну щілину, зводиться в паралельний потік, що колимирується лінзою, та потрапляє на призму. Промені світлового потоку, потрапляючи на грань призми, відхиляються від прямолінійного шляху під кутом, що залежить від довжини хвилі (рис. 3).

При виході з призми промені знову заломлюються та виходять під різними кутами. Це явище називають розкладанням світла (дисперсією). Розкладене випромінювання фокусують та спрямовують на вихідну щілину. Випромінювання, що виходить, має форму вихідної щілини, наприклад, вузької смуги. Щоб отримати випромінювання потрібного інтервалу довжин хвиль, призму повертають навколо осі за допомогою спеціального механічного пристрою. При цьому чим вужча щілина, тим менше інтервал довжин хвиль, що виходять з неї.

Рис. 3. Призмовий монохроматор


Розкладання світла дифракційними решітками базується на явищах дифракції та інтерференції. Дифракційні решітки бувають пропускаючими та відбиваючими. Пропускаюча решітка являє собою пластинку з прозорого матеріалу, наприклад, скла, на яку вручну або спеціальною машиною наносять паралельні штрихи. Випромінювання проходить крізь прозорі смуги та розкладається на промені різних довжин хвиль, що інтерферують між собою. Відбиваючу решітку виготовляють з металевої пластини, на якій нарізають канавки певного профілю. Промені, потрапляючи на виступи решітки, відбиваються та інтерферують. В результаті відбувається розкладання світла на складові промені різних довжин хвиль.

К-во Просмотров: 277
Бесплатно скачать Курсовая работа: Теоретичні основи спектральних методів аналізу