Курсовая работа: Теория распределения информации
Цилиндр – это циклосхема, у которой обязательно равенство V=g (число выходов совпадает с числом нагрузочных групп). Размер цилиндра d представляет собой число охватываемых выходов каждой нагрузочной группы. Цилиндр размера d называется d-шаговым. Кроме размера цилиндр характеризуется наклоном.
Для построения оптимальной схемы нужно построить матрицу связности. Матрица связности – квадратная (g,g), симметричная относительно главной диагонали (по диагонали стоит d доступность), элементы матрицы связности показывают число связей между нагрузочными группами. Для оптимальности схемы необходимо чтобы матрицы связности были однородными и не отличались не более чем на единицу.
1.
V = 25*1+11 = 36
D = 10*1 = 10
G = 10
1) Определим размер цилиндров:
r = [(g*d)/V] (целая часть)
r = [(10*10)/36] = 2
2) Наша схема будет состоять из r и r+1 шаговых цилиндров
r+1 = 2 + 1 = 3
3) Определяем общее количество цилиндров:
k » V / g k » 36 / 10 » 4
4) Определим количество двух шаговых цилиндров:
5) Определим количество трех шаговых цилиндров:
kr+1 = k – kr
kr+1 = 4 – 1 = 3
6) Определим наклон цилиндров. Для этого строим матрицу связности (табл. 7):
Таблица 7
Параметр схемы | Элеме | нты | первой | строки | матриц | для нагр | узочной | группы | |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2 1,3 1,4 1,2 |
2 3 3 3 |
К-во Просмотров: 977
Бесплатно скачать Курсовая работа: Теория распределения информации
|