Курсовая работа: Тепломассообмен при испарении и горении капель жидких топлив

2.1 Метод Зельдовича

Для вывода критического воспламенения воспользуемся методом Зельдовича Я.Б. Разделим область rк < r < rпл на две зоны: первая прилегает к поверхности приведенной пленки rв < r < rпл ; вторая - rк < r < rв . Здесь rв - координата условной границы, на которой происходит воспламенение. Пренебрегая теплом, выделяющимся при химической реакции во второй зоне rк < r < rв , уравнение (1.2) запишем в виде

(2.1)

решая которое получим

а с учётом

имеем выражение для теплового потока

(2.2)

Для первой зоны rв < r < rпл, пренебрегая изменением температуры с координатой, так какдействие химических источников способствует выравниванию температуры по зоне, получим

(2.3)

Сравнивая (2.1) и (2.3) видим, что на границе двух зон r = rв должна существовать область ,в которой

(2.4)

т.е. количество тепла, выделяемое за счёт химической реакции , равно теплу, отводимому . Равенство (2.4) представим в виде первого условия Семёнова

Второе условие Семёнова, определяет неустойчивость теплового равновесия

(2.5)

Подставив в (2.4) из (2.2)

(2.6)

Скорость химической реакции зависит от концентрации паров и температуры. Для определения связи концентрации с температурой запишем уравнение диффузии

Учитывая подобие граничных условий для температуры и концентрации, можно доказать, что

.

Скорость химической реакции в случае избытка окислителя определяется кинетическим уравнением первого порядка

(2.7)

и зависит только от температуры.

Используя уравнения Семёнова, (2.4) и (2.5), имеем систему уравнений

(2.8)

(2.9)

из которой надо исключить температуру парогазовой смеси Тв .

Разделив (2.8) на (2.9), получим уравнение

позволяющее выразить Тв через температуру среды. Оценка величины даёт малую величину по сравнению с . Поэтому без особой погрешности примем

(2.10)

Из (1.13) имеем ранее полученную формулу для массовой скорости испарения

(2.11)

которая при Nu = 2

. (2.12)

Выполним преобразование Франк-Каменецкого

Подставим в (2.8) и используем (2.10)

Найдём радиус воспламенения, интегрируя уравнение (2.2) в пределах от rк до rв и от rк до rпл . В результате получим

Используя формулу (2.11), имеем

,

где

Учитывая (2.10) и представляя

где , получим формулу для rв в виде

(2.13)

Для случая неподвижной среды и координата “поверхности” воспламенения определяется как

Для капли этилового спирта расчёт по этой формуле даёт rв /rк ≈25. Большое расстояние, на котором происходит воспламенение, требует большого времени, чтобы установилось квазистационарное распределение температур и концентраций в газовой фазе. Очевидно, что это время не должно превышать времени полного ис­парения капли. Поэтому критическое условие воспламенения (2.9) совместно с (2.13) для случая неподвижной среды может использоваться только для грубой оценки.

К-во Просмотров: 343
Бесплатно скачать Курсовая работа: Тепломассообмен при испарении и горении капель жидких топлив