Курсовая работа: Термодинамические основы термоупругости

получим тензорное уравнение

, (1.1.5)

Решая это тензорное уравнение относительно компонентов тензора напряжений, найдем

(1.1.6)

где

(1.1.7)

обозначает расширение тела и

γ = α(3λ + 2μ). (1.1.8)

Физический закон, выраженный тензорным соотношением (1.1.6), называется законом Дюамеля — Неймана

Термодинамическими переменными, описывающими состояние упругого тела, являются компоненты деформации (1.1.2) и абсолютная температура Т +.

Используя методы термодинамики обратимых процессов, Био показал, что энтропия s единицы объема тела определяется соотношением

(1.1.9)

где аддитивная постоянная, входящая в определение энтропии, была выбрана таким образом, что энтропия была равна нулю в начальном состоянии. В этом уравнении ρ — плотность тела, с — удельная теплоемкость единицы массы (принимаемая независимой от температуры вблизи равновесной температуры T), и γ определяется формулой (1.1.8). Если мало по сравнению с Т то соотношение (1.1.9) сводится к простому выражению для энтропии единицы объема

(1.1.10)

Таким образом, количество тепла, поглощаемое единицей объема в процессе малых деформаций и малых изменении температуры, определяется формулой

h=Ts = ρс+ γTΔ(1.1.11)

Из теории теплопроводности в твердых телах известно, что изменение температуры внутри изотропного тела подчиняется уравнению

(1.1.12)

k— коэффициент теплопроводности тела;

q — количество тепла;

выделяемого в единице объема тела. Подставляя выражение (1.1.10) в соотношение (1.1.11), найдем

(1.1.13)

Если ввести коэффициент температуропроводности

,

то последнее уравнение можно записать в форме

(1.1.14) где

,

Для того чтобы дополнить систему основных уравнений, присоединим к ней уравнения движения в виде

, (1.1.15)

К-во Просмотров: 369
Бесплатно скачать Курсовая работа: Термодинамические основы термоупругости