Курсовая работа: Термодинамические основы термоупругости
Напряженное и деформированное состояния, представляемые частным интегралом (1.1.26), требуют не только заданного распределения температуры, но также и определенных поверхностных нагрузок, которые могут быть вычислены посредством выражения (1.1.22) и условии равновесия на границе. Для полного решения задачи требуется лишь определить распределение дополнительных напряжениий, обусловленных равными и прямо противоположными нагрузками на границе, что представляет собой задачу теории упругости при заданных нагрузках на границе. Тот факт, что тело нагрето, не играет роли до тех пор, пока упругие постоянные остаются неизменными. Интегралы типа (1.1.26) были использованы Борхардтом при общем анализе теории термоупругости и при решении некоторых частных задач в случае несимметричных распределений температуры в теле со сферическими или цилиндрическими границами. Распределение напряжений, обусловленное специальным распределением температуры в бесконечном и полубесконечном телах, обсуждалось различными авторами. Имеется очень мало точных решений даже этих уравнений, описывающих установившееся состояние, а те, которые имеются, относятся к сферам и цилиндрам, однако в главе 14 книги Тимошенко и Гудиера «TheoryofElasticity» (NewYork, 1951) рассматривается несколько приближенных решений инженерных задач, касающихся термических напряжений в пластинах и стержнях
1.2 Построение задачи термоупругости
В общем случае постановка задачи термоупругости заключается в следующем. Необходимо при заданных механических и тепловых воздействиях определить 16 функций координат хR и времени t: шесть компонентов тензора напряжения шесть компонентов тензора деформации ε - три компонента вектора перемещения и температуру Т, удовлетворяющих: трем уравнениям движения (1.2.1); шести соотношениям между напряжениями и деформациями (1.2.2) или (1.2.3); шести соотношениям между деформациями и перемещениями (1.2.4); уравнению теплопроводности (1.2.5), при определенных начальных и граничных условиях.
(1.2.1)
ρ – плотность,
– силы инерции.
(1.2.2)
где λ и μ – коэффициенты Ляме при изотермической деформации.
(1.2.3)
Е – изотермический модуль упругости;
- коэффициент Пуассона.
(1.2.4)
где – вектор перемещения.
(1.2.5)
S – плотность энергии;
–коэффициент теплопроводности;
– удельная мощность (количество тепла, произведенного за единицу времени в единицу объема) источников тепла.
Начальные условия обычно задаются в виде распределений компонентов вектора перемещения , их скоростей и температуры Т во всей области V упругого тела:
, , при t = 0. (1.2.6)
Здесь и дальше обозначения gi(xR), hi(xR), f(xR) означают функции всех координат хR (R — 1, 2, 3) в рассматриваемой области.
Граничные условия на поверхности Ω упругого тела, ограничивающей его объем V, складываются из механических и тепловых условий.
Механические граничные условия задаются либо в перемещениях
приt >0, (1.2.7)
либо в напряжениях
при t >0, (1.2.8)
— компоненты вектора поверхностной силы;
пj — компоненты единичного вектора внешней нормали к поверхности Ω.
В качестве теплового граничного условия применяется одно из граничных условий теории теплопроводности. Механические и тепловые граничные условия могут быть также смешанными. На одной части поверхности механические граничные условия могут быть заданы в перемещениях (1.2.7), а на другой — в напряжениях (1.2.8). Тепловое граничное условие на одной части поверхности тела задается, например, температурой, а на другой — законом конвективного теплообмена с окружающей средой.
Система уравнений (1.2.1), (1.2.2) или (1.2.3), (1.2.4) и (1.2.5) при указанных начальных граничных условиях описывает связанную нелинейную задачу термоупругости.
При << I значения упругих и термических коэффициентов и удельных теплоемкостей предполагаются постоянными, вместо уравнения (1.2.5) применяется уравнение теплопроводности (1.2.9), и связанная задача термоупругости становится линейной.