Курсовая работа: Термоиндикаторы

2.Высокотемпературные ЦТИВ должны иметь необратимые переходы.

3.Цветовые переходы должны быть четкими, а цвета цветовых зон - контрастными.

4.Критические температуры ЦТИВ должны быть либо независимы от режима нагрева и количественного и качественного состава окружающей среды, либо эти зависимости должны быть повторяющимися в пределах, по крайней мере, одной партии вещества.

5.Не должны взаимодействовать с материалом, в контакте с которым они находятся.

Эти требования показывают, что в настоящее время наиболее целесообразна разработка многопозиционных ТИВ.

Известно, что цвет веществ обусловлен электронными переходами в атомах между термами, причем окрашены те вещества, атомы которых переходят в возбужденное состояние при поглощении энергии 150-300 кДж/моль. Ванадийсодержащие соединения активно изменяют свою окраску в зависимости от температуры и условий окружающей среды вследствие изменения конфигурации электронной оболочки ванадиевых ионов.

Этим требованиям удовлетворяют ванадийсодержащие соединения, в частности, ванадиевые катализаторы и их отходы. Отходы производства ванадиевых катализаторов являются перспективными материалами, благодаря не только наличию ванадиевого компонента, но и наличию прочных высокотемпературных силикатных носителей (диатомит и др.), имеющих высокие адгезионные свойства на поверхности различных материалов.

Указанное позволяет предположить перспективность использования ванадиевых катализаторов и их отходов для получения на их основе многопозиционных цветовых термоиндикаторов, имеющих широкие пределы температурной индикации и большое число контрастных цветовых переходов.


2.2.Сернокислотные ванадиевые катализаторы.

Основное количество серной кислоты, главным потребителем которой является производство минеральных удобрений, вырабатывается контактным способом. Эффективность этого процесса зависит как от выбора оптимальных условий проведения реакции окисления SO2 на основе знания ее кинетики, так и от качества используемых ванадиевых катализаторов. Сернокислотные ванадиевые катализаторы работают в широком интервале температур и концентраций реагирующих компонентов. Практика работы контактных аппаратов показала, что уменьшение активности ванадиевых катализаторов в процессе эксплуатации происходит как в восстановительной, так и в окислительной средах, особенно при относительно низких температурах. Следует полагать, что инактивация катализаторов обусловлена изменением фазового состава ее агрегатного состояния активного компонента. В связи с этим было предпринято физико-химическое исследование систем, моделирующих активный компонент, а также образцов опытных и промышленных катализаторов.

2.2.1.Свойства и состав активного компонента сернокислотных ванадиевых катализаторов.

Основные выводы относительно состава и свойств каталитически активного в условиях сернокислотного катализа вещества были сделаны как на основании физико-химических исследований свойств активного компонента и модельных систем, так и в результате изучения кинетики каталитической реакции окисления SO2 и стационарного состава ванадиевых катализаторов.

Активные компонент в технологическом процессе находится в расплавленном состоянии и исследовать его структуру сложно. Изучение системы K2 S2 O7 -V2 O5 , которая моделирует активный компонент ванадиевого катализатора окисления SO2 , дает некоторые сведения о предполагаемом присутствии тех или иных подвижных функциональных группировок в расплаве, которые в кристаллическом состоянии соединений находятся в упорядоченном состоянии. Таким образом, результаты проведенных исследований модельной системы K2 S2 O7 -V2 O5 дают основание предполагать, что активный компонент ванадиевых катализаторов в условиях реакции окисления SO2 представляет собой раствор сульфованадатов калия в приросульфате калия.

2.2.2.Система K2 S2 O7 -V2 O5.

Система K2 S2 O7 -V2 O5 , которая моделирует активный компонент ванадиевого катализатора окисления диоксида серы исследовалась неоднократно [3,5,6,10,15]. При изучении химического взаимодействия в системе K2 S2 O7 -V2 O5 до температуры 1273 К и соотношениях исходных фаз 1:6, 1:3, 1:2, 1:1, 2:1, 3:1, 6:1 иракскими учеными [20] установлено образование K3 VO8 , KV(SO4 )2 , K3 V5 O14 , K4 V10 O27 , а также некоторых неидентифицированных фаз. Показано, что в присутствии значительного избытка V2 O5 начальная температура разложения K2 S2 O8 понижается по сравнению с температурой для чистой индивидуальной соли, соответственно, с 455 до 433 К. Понижение температуры разложения объяснено взаимодействием между V2 O5 и пироксогруппой иона персульфата:

K2 S2 O8 ® K2 S2 O7 + 1/2 O2

В образцах, нагретых до 683 К, установлено наличие неизвестного калийсульфатного комплекса ванадиум(V), обладающего каталитическим действием.

На основании физико-химического анализа системы K2 S2 O7 -V2 O5 установлено, что активный компонент ванадиевых катализаторов представляет собой расплав пиросульфованадата калия в пиросульфате калия [5,6]. Боресковым с сотрудниками [3] исследована диаграмма плавкости данной системы, обнаружено два соединения, образующихся при соотношении исходных компонентов, равных 6:1 и 1,25:1 и указана возможность существования соединения 3:1. Более обоснованные сведения о фазовом составе рассматриваемой системы получены в последнее время [10,15,20]. Авторами [10,7,9] построена диаграмма состояния системы K2 S2 O7 -V2 O5 (рис. 1).

В системе K2 S2 O7 -V2 O5 отмечено образование трех соединений 3:1, 2:1 и 1:1 K2 S2 O7 -V2 O5 , разлагающихся по перетектическим реакциям. При температурах 588, 638 и 678 К. Реакции образования соединений 2:1 и 1:1 протекают через промежуточные стадии образования соединений 3:1 и 2:1 по схеме:

K2 S2 O7 -V2 O5 523-588 К K2 S2 O7 ·1/3V2 O5 +V2 O5 588-638 К

K2 S2 O7 ·1/2V2 O5 638-663 К K2 S2 O7 ·1V2 O5

Эвтектика при 90 мол.% K2 S2 O7 плавится при температуре 563К. Эндотермические эффекты при 458 К связаны с обратимым полиморфном превращением соединения 3K2 S2 O7 ·1V2 O5 ,

Рис.1 Диаграмма состояния системы K2 S2 O7 -V2 O5 .

I. -K2 S2 O7

II.- 3K2 S2 O7 -V2 O5

III.- 2K2 S2 O7 -V2 O5

IV.- K2 S2 O7 -V2 O5

V.-V2 O5

которое подтверждено результатами высокотемпературных рентгеновских измерений. Эндотермические эффекты в концентрационной области 85-100 мол.% K2 S2 O7 при температуре 478 и 598 К связаны с полиморфным превращением пиросульфата калия [21,22]. При нагревании до 678 К все исследуемые образцы не обнаруживают заметной потере в весе. При плавлении однофазных образцов 3:1, 2:1, 1:1 происходит их полное разложение.

В результате индицирования линий рентгенограммы соединения состава 1:1 определены параметры его ромбической ячейки: а=14,77А, b=25,34А, с=13,19А, z=15, рвыч. =2,20г/см3 , рэксп. =г/см3 [7].

Соединение K2 S2 O7 -V2 O5 кристаллизуется в ромбической сингонии и имеет элементарную ячейку, производную от гексагональной или тригональной . Число формульных единиц z=15 находится в согласии с производностью структуры от гексагональной или тригональной сингонии.

Структуры всех трех соединений составов 1:1, 2:1, 3:1, существующих в системе K2 S2 O7 -V2 O5 , являются производными от структуры K2 S2 O7 . Кристаллохимическое сочетание солеобразного соединения K2 S2 O7 и оксидногоV2 O5 представляет определенный интерес. Высокое значение объема, приходящегося на один атом кислорода Vo =27,42 А для K2 S2 O7 -V2 O5 , свидетельствует о разреженности структуры. В более компактных структурах K2 S2 O7 и V2 O5 объем, приходящейся на один атом кислорода, составляет соответственно 23,4 и 17,9 А [19]. Кажущееся несоответствие числа формульных единицу z=15 (30 атомов K, S, V и 180 атомов О) и возможных кратностей в ромбической сингонии 1,2,4,8,16,32 может, в частности, объясняться неполной заселенностью атомами соответствующих равноценных позиций. В этом случае количество атомов будет меньше количества позиций. Неполное статическое заполнение приводит к образованию в структуре вакансий и пустот, делая ее разреженной и подвижной. Это может ухудшать качество кристаллов и приводить к аморфизации соединения K2 S2 O7 -V2 O5 при температурах, близких к температурам плавления.

В концентрационном интервале 70-90 мол.% K2 S2 O7 переход соединений 1:1, 2:1 и 3:1 из твердого состояния в жидкое может идти с сохранением ближнего порядка [15]. Такое плавление в концентрационном интервале 70-90 мол.% K2 S2 O7 предполагает сохранение функциональных группировок катионов и анионов, составляющих структуру соединений. Этот концентрационные интервал (от 2,3:1 до 9:1 мольных отношений K2 S2 O7 :V2 O5 ) представляет интерес в технологии приготовления активного компонента при окислении SO2 в SO3 .

Активный компонент катализатора в технологическом процессе находится в расплавленном состоянии и исследовать его структуру не представляется возможным. Изучение низкотемпературных кристаллических фаз соединений 1:1, 2:1, 3:1 может дать некоторые сведения о предполагаемом присутствии тех или иных подвижных функциональных группировок в расплаве, которые в кристаллическом состоянии соединений находятся в упорядочном состоянии. В работе [9] Глазыриным на основании данных ИК-спектроскопии установлена природа соединений как сульфатпиросульфатов калия, так и диоксованадия. Авторами [23] система K2 S2 O7 -V2 O5 исследовалась при соотношении от 0 до 5 методами ЯМР. В системе образуются по крайней мере два состояния V5+ , отличающиеся структурой ближайшего порядка (ближайшего окружения). Для первого состояния сохраняется полиядерная структура с большим искажением локального окружения по сравнению с V2 O5 . Для второго состояния ближайшее окружение ванадия существенно иное, чем в V2 O5 , и характеризуется большей плотностью связи ванадий-кислород.

2.3 Индикаторы. Их состав и свойства.

К-во Просмотров: 495
Бесплатно скачать Курсовая работа: Термоиндикаторы