Курсовая работа: Тормозная система с пневматическим приводом

Кроме того, в контур входит трубопровод от нижней секции тормозного крана 16 до клапана 81 управления тормозными системами прицепа с двухпроводным приводом.

Контур II привода рабочих тормозных механизмов задней тележки состоит из части тройного защитного клапана 17; ресиверов 22 общей вместимостью 40 л с кранами 19 слива конденсата и датчиком 18 падения давления в ресивере; части двухстрелочного манометра 5; верхней секции двухсекционного тормозного крана 16; клапана контрольного вывода (Д) автоматического регулятора тормозных сил 30 с упругим элементом; четырех тормозных камер 26; тормозных механизмов задней тележки (промежуточного и заднего мостов); трубопроводов и шланга между этими аппаратами. В контур входит также трубопровод от верхней секции тормозного крана 16 к клапану 31 управления тормозными механизмами с двухпроводным приводом.

Контур III привода механизмов запасной и стояночной тормозных систем, а также, комбинированного привода тормозных механизмов прицепа (полуприцепа) состоит из части двойного защитного клапана 13; двух ресиверов 25 общей вместимостью 40 л с краном 19 слива конденсата и датчиком 18 падения давления в ресиверах; двух клапанов 7 контрольного вывода (В и Е) ручного тормозного крана 2; ускорительного клапана 29; части двухмагистрального перепускного клапана 32; четырех пружинных энергоаккумуляторов 28 тормозных камер; датчика 27 падения давления в магистрали пружинных энергоаккумуляторов; клапана 31 управления тормозными механизмами прицепа с двухпроводным приводом; одинарного защитного клапана 35; клапана 34 управления тормозными механизмами прицепа с однопроводным приводом; трех разобщительных кранов 37 трех соединительных головок; головки 38 типа А однопроводного привода тормозных механизмов прицепа и двух головок 39 типа «Палм» двухпроводного привода тормозных механизмов прицепа; пневмоэлектрического датчика 33 «стопсигнала», трубопроводов и шлангов между этими аппаратами. Следует отметить, что пневмоэлектрический датчик 33 в контуре установлен таким образом, что он обеспечивает включение ламп «стоп-сигнала» при торможении автомобиля не только запасной (стояночной) тормозной системой, но и рабочей, а также в случае выхода из строя одного из контуров последней.

Контур IV привода вспомогательной тормозной системы и других потребителей не имеет своего ресивера и состоит из части двойного защитного клапана 13; пневматического крана 4; двух цилиндров 23 привода заслонок; цилиндра 10 привода рычага останова двигателя; пневмоэлектрического датчика 14; трубопроводов и шлангов между этими аппаратами.

От контура IV привода механизмов вспомогательной тормозной системы сжатый воздух поступает к дополнительным (не тормозным) потребителям; пневмосигналу, пневмогидравлическому усилителю сцепления, управлению агрегатами трансмиссии и пр.

Контур V привода аварийного растормаживания не имеет своего ресивера и исполнительных органов.

Он состоит из части тройного защитного клапана 17; пневматического крана 4; части двухмагистрального перепускного клапана 32; соединяющих аппараты трубопроводов и шлангов.

Пневматические тормозные приводы тягача и прицепа соединяют три магистрали: магистраль однопроводного привода, питающая и управляющая (тормозная) магистрали двухпроводного привода.

На седельных тягачах соединительные головки 38 и 39 находятся на концах трех гибких шлангов указанных магистралей, закрепленных на поддерживающей штанге. На бортовых автомобилях головки 38 и 39 установлены на задней поперечине рамы.

Для улучшения влагоотделения в питающей части тормозного привода автомобилей мод. 53212, 53213 на участке компрессор – регулятор давления дополнительно предусмотрен влагоотделитель, установленный на первой поперечине автомобиля в зоне интенсивного обдува.

С этой же целью на всех моделях автомобиля КамАЗ на участке предохранитель от замерзания – защитные клапаны предусмотрен конденсационный ресивер вместимостью 20 л. На самосвале 55111 отсутствует аппаратура управления тормозными механизмами прицепа, разобщительные краны, соединительные головки [3].

Для наблюдения за работой пневматического тормозного привода и своевременной сигнализации о его состоянии и возникающих неисправностях в кабине на щитке приборов имеются пять сигнальных лампочек, двухстрелочный манометр, показывающий давление сжатого воздуха в ресиверах двух контуров (I и II) пневматического привода рабочей тормозной системы, и зуммер, сигнализирующий об аварийном падении давления сжатого воздуха в ресиверах любого контура тормозного привода.

Механизм вспомогательной тормозной системы показан на рис 1.3.

Рис. 1.3. Механизм вспомогательной тормозной системы: 1 – корпус; 2 – рычаг поворотный; 3 – заслонка; 4 – вал

В приемных трубах глушителя установлены корпус 1 и заслонка 3, закрепленная на валу 4. На валу заслонки закреплен также поворотный рычаг 2, соединенный со штоком пневмоцилиндра. Рычаг 2 и связанная с ним заслонка 3 имеют два положения. Внутренняя полость корпуса сферическая. При выключении вспомогательной тормозной системы заслонка 3 устанавливается вдоль потока отработавших газов, а при включении – перпендикулярно потоку, создавая определенное противодавление в выпускных коллекторах. Одновременно прекращается подача топлива. Двигатель начинает работать в режиме компрессора [6].

1.3 Принцип работы пневматических тормозов ?????? ?????????????? ??????? ????????: ? ??????????? ????????? ????? ??????? ??? ?????????, ??????? ???????? ? ????????? ????????. ??? ??????? ?? ?????? ??????? ???????????? ?? ????????? ????, ??????? ??????? ???????? ? ????????? ???????, ??????? ???????? ? ???????? ????? ????? ????????? ????????, ??????? ? ?????????? ?????????? ? ??? ??????? ?????? ???????????? ??????????. ??????? ????????: ??? ?????????? ????????? ? ?????????? ?????? ?????????? ?????????? ?????? ? ???????, ??? ?? ???????? ??? ?????????. ?? ???????? ?????? ????????? ? ?????????? ?????, ?? ?????????? ????? ?????? ????????? ????? ??????? ?????? ? ??????? ???????. ??? ??????? ?? ?????? ??????? ??????? ?????? ???????????, ? ?????? ?????????? ????????? ? ???????. ????????? ???? ??????? ???????????, ? ?????? ?? ???????? ??????? ????????? ? ???????????? ???????, ? ?????? ???????? ?????????????. ?????? ?????? ?????????? ????? ?????????? ???????????, ? ?????? ????????? ?? ???????? ?????????? ? ????????????? ??????????, ? ?????????? ???????? ?????????????. ??????, ???????? ? ????????????, ????? ?? ?????????, ???, ?????? ???????, ????????? ? ????? ?? ?????????, ? ?? ???????? ?????? ?? ????? ? ????? ?????????? ??????. ????????? ????? ?????????????? ? ???????? ???????. ??? ?????????? ?????? ??????? ??? ???????????? ? ???????? ????????? ?? ???? ?????????? ??????, ? ?????? ?? ??????????? ??????? ? ????????? ????? ????.

1.4 Тормозные жидкости

Тормозные жидкости служат для передачи энергии к исполнительным механизмам в гидроприводе тормозной системы автомобиля.

Рабочее давление в гидроприводе тормозов достигает 10 МПа и более. Развиваемое давление передается на поршни колесных цилиндров, которые прижимают тормозные накладки к тормозным дискам или барабанам. При торможении кинетическая энергия при трении превращается в тепловую. При этом освобождается большое количество теплоты, которое зависит от массы и скорости автомобиля. При экстренных торможениях автомобиля температура тормозных колодок может достигать 600°С, а тормозная жидкость нагреваться до 150°С и выше. Высокие температуры в тормозах и гигроскопичность жидкости приводят к ее обводнению и преждевременному старению. В этих условиях жидкость может отрицательно влиять на резиновые манжетные уплотнения тормозных цилиндров, вызывать коррозию металлических деталей. Но наибольшую опасность для работы тормозов представляет возможность появления в жидкости пузырьков пара и газа, образующихся при высоких температурных режимах эксплуатации из-за низкой температуры кипения самой жидкости, а также при наличии в ней воды.

При нажатии на педаль тормоза пузырьки газа сжимаются, и так как объем главного тормозного цилиндра невелик (5…15 мл), даже сильное нажатие на педаль может не привести к росту необходимого тормозного давления, т.е. тормоз не работает из-за наличия в системе паровых пробок [7].

Надежная работа тормозной системы – необходимое условие безопасной эксплуатации автомобиля, поэтому тормозная жидкость является ее функциональным элементом и должна отвечать комплексу технических требований. Важнейшие из них рассмотрены ниже.

Температура кипения. Это важнейший показатель, определяющий предельно допустимую рабочую температуру гидропривода тормозов. Для большей части современных тормозных жидкостей температура кипения в процессе эксплуатации снижается из-за их высокой гигроскопичности. К этому приводит попадание воды, главным образом за счет конденсации из воздуха. Поэтому наряду с температурой кипения «сухой» тормозной жидкости определяют температуру кипения «увлажненной» жидкости, содержащей 3,5% воды.

Температура кипения «увлажненной» жидкости косвенно характеризует температуру, при которой жидкость будет «закипать» через 1,5…2 года ее работы в гидроприводе тормозов автомобиля. Для надежной работы тормозов необходимо, чтобы она была выше рабочей температуры жидкости в тормозной системе.

Из опыта эксплуатации следует, что температура жидкости в гидроприводе тормозов грузовых автомобилей обычно не превышает 100 С. В условиях интенсивного торможения, например на горных дорогах, температура может подняться до 120 С и более.

В легковых автомобилях с дисковыми тормозами температура жидкости при движении по магистральным автострадам составляет 60…70°С, в городских условиях достигает 80…100°С, на горных дорогах 100…120°С, а при высоких скоростях движения, температурах воздуха и при интенсивных торможениях – до 150 С. В некоторых случаях (спецмашины, спортивные автомобили и т.д.) температура жидкости может превышать указанные значения.

Следует отметить, что начало образования паровой фазы тормозных жидкостей при нагреве, а следовательно, и паровых пробок в гидроприводе тормозов происходит при температуре на 20…25°С ниже температуры кипения жидкости. Это обстоятельство принимается во внимание при установлении показателей качества тормозных жидкостей [1].

Согласно требованиям международных стандартов температура кипения «сухой» и «увлажненной» тормозной жидкости должна иметь значения соответственно не менее 205 и 140С для автомобилей при обычных условиях их эксплуатации и не менее 230 и 155 С – для автомобилей, эксплуатирующихся на режимах с повышенными скоростями или с частыми и интенсивными торможениями, например на горных дорогах. Следует иметь ввиду, что на автомобиле, остановившемся после интенсивных торможений, температура жидкости может некоторое время повышаться за счет теплоты тормозных колодок из-за прекращения их охлаждения встречным потоком воздуха.

Вязкостно-температурные свойства. Процесс торможения обычно длится несколько секунд, а в экстренных условиях – доли секунды. Поэтому необходимо, чтобы сила, прилагаемая водителем к педали, быстро передавалась на поршни рабочих цилиндров. Это условие обеспечивается необходимой текучестью жидкости и определяется максимально допустимой вязкостью при температуре – 40°С: не более 1500 мм/с для жидкостей общего назначения и не более 1800 мм/с – для высокотемпературных жидкостей. Жидкости для Севера должны иметь вязкость не более 1500 мм/с при – 55°С.

Антикоррозионные свойства. В гидроприводе тормозов детали из различных металлов соединяются между собой, что создает условия для протекания электрохимической коррозии. Для предотвращения коррозии жидкости должны содержать ингибиторы, защищающие сталь, чугун, белую жесть, алюминий, латунь, медь от коррозии. Их эффективность оценивается по изменению массы и состоянию поверхности пластин из указанных металлов после их выдерживания в тормозной жидкости, содержащей 3,5% воды, в течение 120 ч при 100С.

К-во Просмотров: 767
Бесплатно скачать Курсовая работа: Тормозная система с пневматическим приводом