Курсовая работа: Традиционная теория силлогистики

EIO - Ferison

Четвертая фигура

AAI - Bramantip

AEE - Camenes

IAI - Dimaris

EAO - Fesapo

EIO - Fresison

Ослабленные модусы :

AEO - Cameno

Характеристика фигур.

Характеризуем в общих чертах все четыре фигуры силлогизма в отношении их познавательного значения.

Фигура 1 . В ней меньшая посылка утвердительная, а большая общая (sitminor, affirmans, пес majorsitspeciaiis). Эта фигура употребляется в тех случаях, когда нужно показать применение общих положений (аксиом, основоположений, законов природы, правовых норм и т. п.) к частным случаям; это есть фигура подчинения. Первая фигура по сравнению с другими фигурами силлогизма обладает еще и той важной особенностью, что ее модусы непосредственно, в чистом виде выражают аксиому силлогизма, которая служит основанием правильного выведения заключения из посылок. Если иметь в виду отношение трех терминов силлогизма (S, M, P), истолковав их как отношение соответствующих множеств (объемов понятий), то аксиома выражается предложением (лат.) - dictumdeomnietnullo (буквально - сказанное обо всем и ни об одном).

Фигура 2 . Как видно вторая фигура дает только отрицательные заключения. Она используется всякий раз когда необходимо доказать, что некоторый частный случай не может быть подведен под данное общее положение, ибо исключается из множества предметов, которое мыслится в термине Р. В этой фигуре одна из посылок должна быть отрицательной и большая посылка должна быть общей (unanegansesto, nec majorsitspeciaiis). Посредством этой фигуры отвергаются ложные дедукции, или ложные подчинения.Таким образом, по второй фигуре отвергаются ложные подчинения, и именно потому, что одна из посылок отрицательная. Юридические приговоры строятся по этой фигуре.

Фигура 3 . Третья фигура применяется для опровержения общих утверждений. В фигуре 3 меньшая посылка должна быть утвердительной, а заключение должно быть частным (sitminoraffirmans, conclusiositspecialis). Поэтому в фигуре 3 обыкновенно отвергается мнимая Общность утвердительных и отрицательных суждений или доказывается исключение из общего положения. Положим, нам нужно доказать, что утверждение «все металлы тверды» допускает исключение, что оно не всеобще. Тогда мы строим силлогизм по фигуре 3:

E Ртуть не тверда.

А Ртуть есть металл.________

О Некоторые металлы не тверды.

Фигура 4 имеет искусственный характер и обыкновенно не употребляется.

Сведение фигур силлогизм

Мы видели, что существуют различные фигуры и модусы силлогизмов. Спрашивается, равноценны ли они? Всё ли равно, если мы будем умозаключать по фигуре 1, 2 или 3? Оказывается, нет, и именно предпочтение следует отдать модусам фигуры 1. Доказательства по этой фигуре имеют особенно очевидный характер.

Для проверки истинности силлогистического вывода, выраженного при помощи какого-либо модуса той или иной фигуры, следует этот модус свести к какому-либо модусу фигуры 1, и именно потому, что очевидность заключения по фигуре 1 можно доказать, показав применимость аксиомы силлогизма к модусам фигуры 2.

Буква s показывает, что суждение, обозначенное предшествующей ему гласной, должно подвергнуться чистому обращению (conversiosimplex).

Буква р показывает, что суждение, обозначенное предшествующей ему гласной, нужно обращать peraccidens, или посредством ограничения.

Буква m показывает, что посылки силлогизма нужно переместить, т. е. большую посылку нужно сделать меньшей в новом силлогизме, а меньшую большей (нужно произвести metathesis, или mutatiopraemissarum).

В, С, D, F, начальные согласные названий, показывают модусы фигуры 1, получающиеся от сведения. Так Cesare, Camestres и Camenes фигур 2 и 4 можно свести к Celarent фигуры 1; Darapti, Disamis фигуры 3 можно свести к Darii, Fresison — к Ferio.

Буква k показывает, что данный модус может быть доказан через посредство какого-либо модуса фигуры 1 при помощи особого приёма, который называется reductioperdeductionemadimpossibile, или, короче, reductioadimpossibile. Этот приём сведения называется также reductioadabsurdum.

Критика Я. Лукасевичем традиционной силлогистики

Во многих учебниках по логике и философских трудах[2] в качестве примера аристотелевского силлогизма приводится следующий:

(1) Все люди смертны,

Сократ — человек, следовательно,

К-во Просмотров: 312
Бесплатно скачать Курсовая работа: Традиционная теория силлогистики