Курсовая работа: Цепи Маркова

получим утверждение теоремы.

Определим матрицу В матричной записи (3) имеет вид

(5)

Так как то где − матрица вероятности перехода. Из (5) следует

(6)

Результаты, полученной в теории матриц, позволяют по формуле (6) вычислить и исследовать их поведение при

Пример 1. Задана матрица перехода Найти матрицу перехода

Решение. Воспользуемся формулой

Перемножив матрицы, окончательно получим:

.

§4. Стационарное распределение. Теорема о предельных вероятностях

Распределение вероятностей в произвольной момент времени можно найти, воспользовавшись формулой полной вероятности

(7)

Может оказаться, что не зависит от времени. Назовем стационарным распределением вектор , удовлетворяющий условиям

,

(8)

где вероятности перехода.

Если в цепи Маркова то при любом

Это утверждение следует по индукции из (7) и (8).

Приведем формулировку теоремы о предельных вероятностях для одного важного класса цепей Маркова.

Теорема 1. Если при некотором >0 все элементы матрица положительны, то для любых , при

, (9)

где стационарное распределение с а некоторая постоянная, удовлетворяющая неравенством 0< h <1.

Так как , то по условию теоремы из любого состояния можно попасть в любое за время с положительной вероятностью. Условия теоремы исключает цепи, являющиеся в некотором смысле периодическими.

Если выполнить условие теоремы 1, то вероятность того, что система находится в некотором состоянии , в пределе не зависит от начального распределение. Действительно, из (9) и (7) следует, что при любом начальном распределении ,

Рассмотрим несколько примеров цепи Маркова, которых условия теоремы 1, не выполнены. Нетрудно проверить, что такими примерами является примеры . В примере вероятности перехода имеют приделы, но эти приделы зависят от начального состояния. В частности, при


0<<,

К-во Просмотров: 640
Бесплатно скачать Курсовая работа: Цепи Маркова